Rényi Entropies of Dynamical Systems: A Generalization Approach

Document Type : Research Paper

Authors

1 Department of Mathematics, Sirjan Branch, Islamic Azad University, Sirjan, Iran

2 Department of Economics, Sirjan Branch, Islamic Azad University, Sirjan, Iran

Abstract

Entropy measures have received considerable attention in quantifying the structural complexity of real-world systems and are also used as measures of information obtained from a realization of the considered experiments. In the present study, new notions of entropy for a dynamical system are introduced. The Rényi entropy of measurable partitions of order and its conditional version are defined, and some important properties of these concepts are studied. It is shown that the Shannon entropy and its conditional version for measurable partitions can be obtained as the limit of their Rényi entropy and conditional Rényi entropy. In addition, using the suggested concept of Rényi entropy for measurable partitions, the Rényi entropy for dynamical systems is introduced. It is also proved that the Rényi entropy for dynamical systems is invariant under isomorphism.

Keywords


[1] R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, Transactions of the American Mathematical Society vol.114, (1965) 309{319.
[2] L. Antunes, A. Matos, A. Teixeira, Conditional renyi entropies, IEEE Transactions on Information Theory vol.58 (2012) 4273{4277.
[3] M. Agop, S. Gavril, A. Gavrilu, SL(2,R) Invariance of the Kepler Type Motions and Shannon Informational Entropy.  Uncertainty Relations Through the Constant Value of the Onicescu Informational Energy, Reports on Mathematical Physics vol.75, no. 1 (2015) 101{112.
[4] E. Arikan, An Inequality on Guessing and its Application to Sequential Decoding, IEEE Transactions on Information Theory vol. 42, n. 1 (1996) 99{105.
[5] V.V. Aristov, A.S. Buchelnikov, Y.D, Nechipurenko, The Use of the Statistical Entropy in Some New Approaches for the Description of Biosystems, Entropy vol.24 (2022) 172.
[6] S.R. Bentes, R. Menezes, D.A. Mendes, Long memory and volatility clustering: is the empirical evidence consistent across stock markets?, Physica A vol. 387 (2008) 3826{3830.
[7] L. Boltzmann, Weitere Studien uber das Warmegleichgewicht unter Gasmolekulen, Wiener Berichte vol. 66 (1872) 275{370.
[8] L. Boltzmann, u ber die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung respective den Satzen uber das Warmegleichgewicht, Wiener Berichte vol. 76 (1877) 373{435.
[9] C. Cachin, Entropy measures and unconditional security in cryptography, Ph.D. Thesis, ETH Zurich, (1997).
[10] M. Camesasca, M. Kaufman, I.M. Zloczower, Quantifying Fluid Mixing with the Shannon Entropy, Macromolecular Theory and Simulations vol. 15, n. 8 (2006) 595{607.
[11] Ch. Corda, M. Fatehi Nia, M.R. Molaei, Y. Yamin Sayyari, Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like BlackHoles Entropies,Entropy vol.20, no. 1 (2018) 56.
[12] I. Csiszar, Generalized cuto  rates and Renyi's information measures, IEEE Transactions on Information Theory vol. 41 (1995) 26.
[13] A. Di Nola, A. Dvurecenskij, M. Hycko, C. Manara, Entropy on E ect Algebras with the Riesz Decomposition Property I: Basic Properties, Kybernetika vol.41 (2005) 143{160.
[14] X. Dong, The gravity dual of Renyi entropy, Nature Communication vol.7 (2016) 12472.
[15] A. Dukkipati, S. Bhatnagar,M.N. Murty, Gelfand{Yaglom{Perez theorem for generalized relative entropy functionals, Information Sciences vol.177 (2007) 5707{5714.
[16] Z. Eslami Giski, M. Ebrahimi, Entropy of countable partitions on e ect algebras with the Riesz decomposition property and weak sequential e ect algebras, Cankaya University Journal of Science and Engineering vol.12 (2015) 20{39.
[17] Z. Eslami Giski, A. Ebrahimzadeh, An Introduction of Logical Entropy on Sequential E ect Algebra, Indagationes Mathematicae vol.28 (2017) 928{937.
[18] Z. Eslami Giski, A. Ebrahimzadeh, D. Markechova, Logical entropy on e ect algebras with the Riesz decomposition property, The European Physical Journal - Plus vol. 133 (2018) 286.
[19] Z. Eslami Giski, A. Ebrahimzadeh, Unifying entropies Of quantum logic based on Renyi entropies, Report on Mathematical Physics vol. 83 (2019) 305{327.
[20] Z. Eslami Giski, A. Ebrahimzadeh, D. Markechova, Renyi entropy of fuzzy dynamical systems, Chaos, Solitons and Fractals vol. 123 (2019) 244{253.
[21] Z. Eslami Giski, Renyi Entropy and Renyi Divergence in Sequential E ect Algebra, Open Systems and Information Dynamics vol. 27, n. 2 (2020) 2050008.
[22] L. Golshani, E. Pasha, Gh. Yari, Gh. Some properties of Renyi entropy and Renyi entropy rate, Information Sciences vol. 179 (2009) 2426{2433.
[23] A.N. Kolmogorov, New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces, Doklady Akademii Nauk SSSR vol.119 (1958) 861{864.
[24] D.E. Lake, Renyi entropy measures of heart rate gaussianity, IEEE Transactions on Biomedical Engineering vol.53 (2006) 21{27.
[25] E.K. Lenzi, R.S. Mendes, L.R. da Silva, Statistical mechanics based on Renyi entropy, Physica A vol.280 (2000) 337{345.
[26] Q.Sh. Li, W.Y. Su, J. Zou, Comparing two evidences of quantum chaos, Chaos Solitons Fractals vol.14 (2002) 975{979.
[27] D. Markechova, The entropy of fuzzy dynamical systems, Busefal vol. 38 (1989) 38{41.
[28] A. Mehrpooya, M. Ebrahimi, An Application of Geometry in Algebra: Uncertainty of Hyper MV{Algebras, Proceedings of the 7th Conference of Geometry and Topology, (Tehran, 2014), 529{534.
[29] A. Mehrpooya, M. Ebrahimi, B. Davvaz, Two dissimilar approaches to dynamical systems on hyper MV-algebras and their information entropy, The European Physical Journal - Plus vol. 132 (2017) 379.
[30] A. Mehrpooya, Y. Sayyari, M.R. Molaei, Algebraic and Shannon entropies of commutative hypergroups and their connection with information and permutation entropies and with calculation of entropy for chemical algebras, Soft Computing vol. 23 (2019) 13035{13053.
[31] M. Ormos, D. Zibriczky, Entropy-Based Financial Asset Pricing, PLoS ONE vol. 9, n.12 (2014).
[32] J.B. Paris, S.R. Rad, Inference processes for quanti ed predicate knowledge, Logic, Language,Information and Computation vol. 5110 (2008) 249{259.
[33] A. Peccarelli, N. Ebrahimi, A Comparison of Variance and Renyi's Entropy with Application to Machine Learning, Thesis (2017).
[34] J. Petrovicova, On the entropy of dynamical systems in product MV{algebras, Fuzzy Sets And Systems vol. 121 (2001) 347{351.
[35] B. Purvis, Y. Mao, D. Robinson, Entropy and its Application to Urban Systems, Entropy vol. 21, n. 1 (2019) 56.
[36] A.E. Rastegin, On quantum conditional entropies de ned in terms of the F-divergences, Report on Mathematical Physics vol. 73, n. 3 (2014) 393{411.
[37] A. Renyi, On measures of entropy and infromation, Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, (Berkeley ,1961), 547{561.
[38] B. Riecan, Kolmogorov-Sinaj entropy on MV{algebras, International Journal Of Theoretical Physics vol. 44, no. 7 (2005) 1041{1052.
[39] PK. Sahoo, G. Arora, A thresholding method based on two-dimensional Renyi entropy, Pattern Recognit, vol. 37, (2004) 1149{1161.
[40] J. Schug, W.P. Schuller, C. Kappen, J.M. Salbaum, M. Bucan, Ch.J. Stoeckert, Promoter features related to tissue speci city as measured by Shannon entropy, Genome Biology vol. 6, no. 4 (2005).
[41] C.E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journall vol. 27 (1948) 379{423.
[42] E. Shuiabi, V. Thomson, N. Bhuiyan, Entropy as a measure of operational exibility, European Journal of Operational Research vol. 165 (2005) 696{707.
[43] Y.G. Sinai, On the notion of entropy of a dynamical system, Doklady of Russian Academy of Sciences vol. 124 , no. 3 (1959) 771{1959.
[44] M. Tomamichel, A framework for non-asymptotic quantum information theory, Ph.D. Thesis, ETH Zurich (2012) arXiv:1203.2142.
[45] K.G.H. Vollbrecht, M.M.Wolf, Conditional entropies and their relation to entanglement criteria, Journal of Mathematical Physics vol. 43, (2002) 4299{4306.
[46] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, NY, USA, 1982.
[47] L. Zunino, M. Zanin, B.M. Tabak, D.G. Perez, O.A.Rosso Forbidden patterns, permutation entropy and stock market ineciency, Physica A: Statistical Mechanics and its Applications vol. 388, (2009) 2854{2864.