[1] R.C. Brigham, G. Chartrand, R.D. Dutton, and P. Zhang, On the dimension of trees, Discrete Mathematics 294 (2005) 279-283.
[2] G.G. Chappell, J. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349-366.
[3] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113.
[4] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NO-Completeness, Freeman, New York, 1979.
[5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
[6] B.L. Hulme, A.W. Shiver, and P.J. Slater, A Boolean algebraic analysis of re protection, Algebraic and Combinatorial Methods in Operations Research, 95 (1984) 215-227.
[7] M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics 3 (1993) 217-229.
[8] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70(3) (1996) 217-229.
[9] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing, 25 (1984), 113-121.
[10] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549-559.