[1] A. M. De Livera, R. J. Hyndman, and R. D. Snyder Forecasting time series with complex seasonal patterns using exponential smoothing," J. Am. Stat. Assoc. vol. 106, no. 496 (2011), 1513{1527.
[2] A. Staszewska-Bystrova, A. Staszewska-Bystrova, and A. Staszewska-Bystrova, Boot-strap prediction bands for forecast paths from vector autoregressive models Journal of Forecasting vol. 30, no. 8 (2011), 721-{735.
[3] B. EfronBootstrap Methods: Another Look at the Jackknife Ann. Stat. vol. 7, no. 1 (1979), 1-{26.
[4] E. Paparoditis, Sieve bootstrap for functional time series the Annals of Statistics vol. 46, no. 6B (2018) 3510|3538.
[5] F. Harrou, A. Saidi, and Y. Sun Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid Energy Convers. Manag. vol. 201 (2019), p.112077.
[6] G. Dikta and M. Scheer Bootstrap Methods: with Application in R, Springer, New York, 2021.
[7] G. Masarotto, Bootstrap prediction intervals for autoregressions International Journal of Forecasting vol. 6, no. 2 (1990) 229-{239.
[8] J. P. Kreiss, E. Paparoditis, and D. N. Politis, On the range of validity of the autore-gressive sieve bootstrap Ann. Stat. vol. 39, no. 4 pp. 2103{2130, 2011.
[9] J. H. Kim, Bootstrap-after-bootstrap prediction intervals for autoregressive models Journal of Business & Economic Statistics vol. 19, no. 1 (2001), 117-{128.
[10] J. H. Kim, H. Song, and K. K. F. Wong, Bias-corrected bootstrap prediction intervals for autoregressive model: new alternatives with applications to tourism forecasting Journal of Forecasting vol. 29, no. 7 (2010) 655-{672.
[11] M. Chamdani, U. Mahmudah, and S. Fatimah Prediction of Illiteracy Rates in Indonesia Using Time Series Int. J. Educ. vol. 12, no. 1 (2019), 34-{41.
[12] M. La Rocca, F. Giordano, and C. Perna, Clustering nonlinear time series with neural network bootstrap forecast distributions International Journal of Approximate Reasoning vol. 137 (2021), 1-{15.
[13] M. P. Clements and J. H. Kim, Bootstrap prediction intervals for autoregressive time series Comput. Stat. Data Anal. vol. 51, no. 7 (2007), 3580-{3594.
[14] M. P. Clements and N. Taylor, Bootstrapping prediction intervals for autoregressive models Int. J. Forecast. vol. 17, no. 2 (2001), 247|267.
[15] M. R. M. R. Nieto, R. B. Carmona-Ben~Atez, and R. B. Carmona-Bentez ARIMA+GARCH+Bootstrap forecasting method applied to the airline industry J. Air Transp. Manag. vol. 71, no. C (2018), 1-{8.
[16] M. R. M. R. Chernick and R. A. R. A. R. A. LaBudde, An introduction to bootstrap methods with applications to R, John Wiley & Sons, New York, 2014.
[17] N. A. Mobarakeh, M. K. Shahzad, A. Baboli, and R. Tonadre Improved forecasts for uncertain and unpredictable spare parts demand in business aircraft's with bootstrap method IFAC-PapersOnLine vol. 50, no. 1 (2017), 15241|15246. 2017.
[18] R. Errouissi, J. Cardenas-Barrera, J. Meng, E. Castillo-Guerra, X. Gong, and L. Chang Bootstrap prediction interval estimation for wind speed forecasting Proceeding of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE),(Montreal,2015), 1919-{1924.
[19] R. J. R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts, 2018.
[20] Y. S. Lee and S. Scholtes Empirical prediction intervals revisited Int. J. Forecast. vol. 30, no. 2 (2014), 217-{234.