[1] L. Alkhalifa, H. Dridi, K. Zennir, Blow-Up of Certain Solutions to Nonlinear Wave Equations in the Kirchho -Type Equation with Variable Exponents and Positive Initial Energy, Journal of Function Spaces. Hindawi. (2021), 9 pages.
[2] S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: existence and blow-up, Di er Equ Appl. 3(4) (2011), 503-525.
[3] S. Antontsev, S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math. 234 (9) (2010), 2633-2645.
[4] S. Antontsev, V. Zhikov, Higher integrability for parabolic equations of p(x; t)-Laplacian type, Advances in Di erential Equations. 10(9) (2005), 1053-1080.
[5] A. Benaissa, S. A. Messaoudi Blow up of solutions of a nonlinear wave equation, J. Appl. Math. 2(2) (2002), 105-108.
[6] A. Benaissa, S. A. Messaoudi, Blow-up of solutions for Kirchho equation of q-Laplacian type with nonlinear dissipation, Colloq. Math. 94(1) (2002), 103-109.
[7] W. Chen, Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal. 70(9) (2009), 3203-3208.
[8] Q. Gao, F. Li, Y. Wang, Blow-up of the solution for higher-order Kirchho -type equations with nonlinear dissipation, Cent. Eur. J. Math. 9(3) (2011), 686-698.
[9] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Di er. Equ. 109(2) (1994), 295-308.
[10] B. Guo, W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with p(x; t)-Laplacian and positive initial energy, C. R. Mec. 342(9) (2014), 513-519.
[11] Q. Hu, J. Dang, H. Zhang, Blow-up of solutions to a class of Kirchho equations with strong damping and nonlinear dissipation, Boundary Value Problems, Springer 112 (2017), 1-10.
[12] G. R. Kirchho , Vorlesungen uber Mechanik, 3rd ed., Teubner, Leipzig (1883).
[13] D. Lars, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics. Springer (2011).
[14] F. C. Li, Global existence and blow-up of solutions for a higher-order Kirchho -type equation with nonlinear dissipation, Appl. Math. Lett. 17(12) (2004), 1409-1414.
[15] M. Liao, B. Guo, X. Zhu, Bounds for Blow-up Time to a Viscoelastic Hyperbolic Equation of Kirchho Type with Variable Sources, Springer 170 (2020), 755-772
[16] X. Lin, F. Li, Global existence and decay estimates for nonlinear Kirchho -type equation with boundary dissipation, Di . Equs. Appli. 5(2) (2013), 297-317.
[17] S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl. 265(2) (2002), 296-308.
[18] S. A. Messaoudi, On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities, Math. Meth. Appl. Sci. (2019), pp. 1-13.
[19] S. A. Messaoudi, B. S. Houari, A blow-up result for a higher-order nonlinear Kirchho -type hyperbolic equation, Appl. Math. Lett. 20 (2007), 866-871.
[20] S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: existence and blow-up, Comput. Math. Appl. 74 (2017), 3024-3041.
[21] S. A. Messaoudi, A. A. Talahmeh, Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities, Math. Methods Appl. Sci. (2017), 1-11.
[22] S. A. Messaoudi, A. A. Talahmeh, On wave equation: Review and recent results, Arabian. J. Math. 7 (2018), 113-154.
[23] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchho string with nonlinear dissipation, J. Math. Anal. Appl. 216 (1997), 321-342.
[24] E. Piskin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math. De Gruyter Open Access. 13 (2015), 408-420.
[25] E. Piskin, Finite time blow up of solutions of the Kirchho -type equation with variable exponents, International Journal of Nonlinear Analysis and Applications, vol. 11, no. 1 (2020), 37-45.
[26] I. E. Segal, The global Cauchy Problem for a relativistic scalar eld with power interation , Bull. soc. Math. France. 91 (1963), 129-135.
[27] H. M. Srivastava, M. Izadi, The Rothe-Newton approach to simulate the variable coecient convection-di usion equations, J. Mahani Math. Res. Cent. 11(2) (2022), 141-158.
[28] L. Sun, Y. Ren, W. Gao, Lower and upper bounds for the blow-up time for nonlinear wave equation with variable sources, Comput. Math. Appl. 71(1) (2016), 267-277.
[29] T. Taniguchi, Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchho type with nonlinear damping and source terms, J. Math. Anal.Appl. Elsevier. 361 (2010), 566-578.
[30] S. T. Wu, L. Y. Tsai Blow-up of solutions for some non-linear wave equations of Kirchho type with some dissipation, Nonlinear Anal. 65 (2006), 243-264.
[31] Y. J. Ye, Global Existence and Energy Decay Estimate of Solutions for a Higher-Order Kirchho Type Equation with Damping and Source Term, Nonlinear Analysis : Real World Applications, 14 (2014), 2059-2067.
[32] K. Zennir, M. Bayoud, G. Svetlin, Decay of solution for degenerate wave equation of Kirchho type in viscoelasticity, International Journal of Applied and Computational Mathematics, vol. 4, no. 1 (2018), 1-18.