A characterization of skew $b$-derivations in prime rings

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India

2 Department of Applied Mathematics, Z. H. College of Engineering & Technology Aligarh Muslim University, Aligarh, India

Abstract

Let $R$ be a prime ring, $\alpha$ an automorphism of $R$ and $b$ an element of $Q$, the maximal right ring of quotients of $R$. The main purpose of this paper is to characterize skew $b$-derivations in prime rings which satisfy various differential identities. Further, we provide an example to show that the assumed restrictions cannot be relaxed.

Keywords


[1] S. Ali and H. Shuliang, On derivations in semiprime rings, Algebr. Represent. Theory. (15)(6) (2012) 1023{1033.
[2] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. (42)(1-2) (2002) 3{8.
[3] K. I. Beidar, On functional identities and commuting additive mappings, Comm. Algebra. 26(6) (1998) 1819{1850.
[4] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., New York, 1996.
[5] H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66(4) (1995) 337{343.
[6] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30(1) (1987) 92{101.
[7] C.-L. Chuang and T.-K. Lee, Identities with a single skew derivation, J. Algebra 288(1) (2005) 59{77.
[8] M. N. Daif, Commutativity results for semiprime rings with derivations, Internat. J. Math. Math. Sci. 21(3) (1998) 471{474.
[9] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15(1) (1992) 205{206.
[10] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21(3) (1978) 369{370.
[11] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
[12] A. Mamouni, L. Oukhtite, B. Nejjar and J. J. Al Jaraden, Some commutativity criteria for prime rings with di erential identities on Jordan ideals, Comm. Algebra. 47(1) (2019) 355{361.
[13] M. Mosadeq, Module generalized derivations on triangular banach algebras, J. Mahani Math. Res. Cent. 2(1) (2013) 43{52.
[14] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(6) (1957) 1093{1100.
[15] N. Rehman and M. A. Raza, On ideals with skew derivations of prime rings, Miskolc Math. Notes 15(2) (2014) 717{724.