$\gamma$- BCK algebras

Document Type : Research Paper

Authors

1 Department of pure Mathematics, Facultu of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

2 Department of Mathematics, Sankethika Institute of Tech. and Management, Visakhapatnam, 530 041, India

3 Department of Mathematics, GIS, GITAM (Deemed to be University), Visakhapatnam- 530 045, A.P., India

Abstract

We know that $\Gamma-$ring, $\Gamma-$incline, $\Gamma-$semiring, $\Gamma-$semigroup are generalizations of
ring, incline, semiring and semigroup respectively. In this paper, we introduce the concept of $\Gamma-$BCK-algebras as a generalization of BCK-algebras and study $\Gamma-$BCK-algebras. We also introduce subalgebra, ideal, closed ideal, normal subalgebra, normal ideal and construct quotient of $\Gamma-$BCK-algebras. We prove that if $f: M\to L$ be a normal homomorphism of $\Gamma-$BCK-algebras $M$ and $N,$ then $\Gamma-$BCK-algebra $M/N$ is isomorphic to $Im (f)$ where $N =Ker (f).$

Keywords


[1] Akram, M., Spherical fuzzy k-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 2(3) 85{98 (2021).
[2] Akram, M. Davvaz, B. and Feng, F., Intutionistic fuzzy soft K-algebras, Mathematics in Computer science, 7(3) 353{365 (2013).
[3] Dar, K. H., and Akram, M., On K-homomorphisms of K-algebras, International Mathematical Forum, 2(46) 2283{2293 (2007).
[4] Huang, Y. S., BCI-Algebra, Science Press, Beijing, China, (2006).
[5] Iseki, K., On BCI-algebras, Kobe University. Mathematics Seminar Notes, 8(1) (1980) 125{130.
[6] Iseki, K. and Tanaka, S., An introduction to the theory of BCK-algebras, Mathematica Japonica, 23(1) (1978) 1{26.
[7] Imai, Y. and Iseki, K., On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, 42 (1966) 19{22.
[8] Iseki, K., An algebra related with a propositional calculus, Proceedings of the Japan Academy, 42 (1966) 26{29.
[9] Jie, J. M. and Jun, Y. B., BCK-Algebras, Kyung Moon Sa Co., Seoul, Republic of Korea, 1994.
[10] Meng, J., On ideals in BCK-algebras, Math., Japonica 40 (1994) 143{154.
[11] Murali Krishna Rao, M., 􀀀􀀀semirings-I, Southeast Asian Bull. of Math., 19(1) (1995) 49{54.
[12] Murali Krishna Rao, M. and Venkateswarlu, B. Regular 􀀀􀀀incline and  eld 􀀀􀀀semiring, Novi Sad J. of Math., 45 (2) (2015), 155-171.
[13] Murali Krishna Rao, M., 􀀀-Group, Bulletin Int. Math. Virtual Inst., 10(1) (2020) 51{58.
[14] Radfar, A., Rezai, A., Saeid, A. B., Extensions of BCK-algebras, Cogent Math., 3 (2016).
[15] Sen, M. K., On 􀀀􀀀semigroup, Proc. of Inter. Con. of Alg. and its Appl., Decker Publicaiton, New York (1981) 301{308.
Volume 11, Issue 3 - Serial Number 23
Special Issue dedicated to Prof. Mashaallah Mashinchi.
November 2022
Pages 133-145
  • Receive Date: 16 April 2022
  • Revise Date: 18 June 2022
  • Accept Date: 25 July 2022