Languages of single-valued neutrosophic general automata

Document Type : Research Paper

Authors

1 Department of Mathematics, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

In this paper, we define the concepts of single-valued neutrosophic general automaton, complete and deterministic single-valued neutrosophic general automaton. We present a minimal single-valued neutrosophic general automaton that preserves the language for a given single-valued neutrosophic general automaton. Moreover, we present the closure properties such as union and intersection for single-valued neutrosophic general automata.

Keywords


[1] M. Abdel-Basset, M. Saleh, A. Gamal, F. Smarandache, An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutro-sophic number, Applied Soft Computing, 77 (2019), 438-452.
[2] M. Abdel-Basset, V. Chang, A. Gamal, F. Smarandache. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing  eld, Computers in Industry, 106 (2019), 94-110.
[3] M. Abdel-Basset, G. Manogaran, A. Gamal, F. Smarandache. A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection, Journal of Medical Systems, 43:38 (2019), 1-13.
[4] M. Abdel-Basset, M. Mohamed. A novel and powerful framework based on neutrosophic sets to aid patients with cancer, Future Generation Computer Systems, 98 (2019), 144-153.
[5] Kh. Abolpour, M. M. Zahedi, M. Shamsizadeh, BL-general fuzzy automata and minimal realization: Based on the associated categories, Iranian Journal of Fuzzy Systems, 17 (2020), 155-169.
[6] M. Ali, L. H. Son, M. Khan, N. T. Tung. Segmentation of dental X-ray images in medical imaging using neutrosophic orthogonal matrices. Expert Systems with Applications, 91 (2018), 434-441.
[7] I. Deli. Some operators with IVGSVTrN-numbers and their applications to multiple criteria group decision making, Neutrosophic Sets and Systems, 25 (2019), 33-53.
[8] M. Doostfatemeh and S. C. Kremer. General Fuzzy Automata, New Ecient Acceptors for Fuzzy Languages. 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, 2006, p. 2097-2103. doi: 10.1109/FUZZY.2006.1681991
[9] M. Doostfatemeh, S.C. Kremer, New directions in fuzzy automata, International Journal of Approximate Reasoning, 38 (2005), 175-214.
[10] Y. B. Jun, Seon Jeong Kim, Florentin Smarandache. Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 7(2) (2018), 23.
[11] J. Kavikumar, D. Nagarajan, S. Broumi, F. Smarandache, M. Lathamaheswari, N.A. Ebas, Neutrosophic general  nite automata. In nite Study, 27 (2019), 17-36.
[12] V. Karthikeyan, R. Karuppaiya, Products of Interval Neutrosophic Automata, Neutro-sophic Sets and Systems, 49 (2022), 416-423.
[13] V. Karthikeyan, R. Karuppaiya, Reverse Subsystems of Interval Neutrosophic Automata, Neutrosophic Sets and Systems, 46 (2021), 268-275.
[14] J. Kavikumar, D. Nagara jan, S. P. Tiwari, Said Broumi and Florentin Smarandache, Composite Neutrosophic Finite Automata, Neutrosophic Sets and Systems, 36 (2020), 282-291.
[15] T. Mahood, Q. Khan: Interval neutrosophic  nite switchboard state machine, Afr. Mat. 20(2) (2016), 191-210
[16] K. Mohana, V.Christy, F. Smarandache. On multi-criteria decision making problem via bipolar single-valued neutrosophic settings, Neutrosophic Sets and Systems, 25 (2019),125-135.
[17] N.A. Nabeeh, N. A, F. Smarandache, M. Abdel-Basset, H.A. El-Ghareeb, A. Aboelfe-touh. An integrated neutrosophic-TOPSIS approach and its application to personnel selection: A new trend in brain processing and analysis. IEEE Access, 7 (2019), 29734-29744.
[18] D. Nagarajana, M. Lathamaheswari, Said Broumi, J. Kavikumar. A new perspective on trac control management using triangular interval type-2 fuzzy sets and interval neutrosophic sets. Operations Research Perspectives, (2019).
[19] D. Nagarajan, M. Lathamaheswari, Said Broumi, J. Kavikumar. Dombi interval valued neutrosophic graph and its role in trac control management. Neutrosophic Sets and Systems, 24 (2019), 114-133.
[20] R. G. Ortega, M. L. Vazquez, J. A. S. Figueiredo, A. Guijarro-Rodriguez. Sinos river basin social-environmental prospective assessment of water quality management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS, Neutrosophic Sets and Systems, 23 (2018), 60-171.
[21] A. Saeidi Rashkolia, M. Shamsizadeh, Transformation of BL-general fuzzy automata, International Journal of Industrial Mathematics, 11(2019), 177-187.
[22] E.S. Santos, Maximin automata, Information Control, 12 (1968) 367-377.
[23] F. Smarandache, A unifying  eld in logics neutrosophic logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability, 3rd ed. American Research Press, 2003.
[24] F. Smarandache, Neutrosophic set: A generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, 24(2005), 3, 287-297.
[25] F. Smarandache, Neutrosophy: A new branch of philosophy, Multiple valued logic: An international journal, 8(2002), 297-384.
[26] F. SMARANDACHE: A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, set and Logic, Rehoboth, American Research Press, 1999.
[27] M. Shamsizadeh, Single valued neutrosophic general machine, Neutrosophic Sets and Systems, 49 (2022), 509-530.
[28] M. Shamsizadeh, M. M. Zahedi, A note on Quotient structures of intuitionistic fuzzy  nite state machines", Journal of Applied Mathematics and Computing, 1 (2016), 413-423.
[29] M. Shamsizadeh, M.M. Zahedi, Bisimulation of type 2 for BL-general fuzzy automata, Soft Computing 23.20 (2019), 9843-9852.
[30] M. Shamsizadeh, M. M. Zahedi, Intuitionistic general fuzzy automata, Soft Computing, 9 (2016), 3505-3519.
[31] M. Shamsizadeh, M.M. Zahedi, Minimal and statewise minimal intuitionistic general L-fuzzy automata, Iranian Journal of Fuzzy Systems, 13 (2016), 131-152.
[32] M. Shamsizadeh, M.M. Zahedi, Minimal Intuitionistic General L-Fuzzy Automata, Italian Journal of Pure and Applied Mathematics, 35 (2015), 155-186
[33] H. Wang, F. Smarandache, Y. Zhang, R. Sunderaraman, Interval Neutrosophic Sets and Logic, Theory and Applications in Computing, Hexis, Phoenix, AZ 5, 2005.
[34] H. Wang, F. Smarandache, Y. Zhang, R. Sunderaraman, Single Valued Neutrosophic sets, Proceedings in Technical serise and applied Mathematics, 2012.
[35] W.G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classi cation, Ph.D. Thesis, Purdue University, 1967.
[36] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338{353.