[1] Andrews, G.E., Askey, R. and Roy, . Special Functions, Cambridge University Press, Cambridge, UK, 1999.
[2] Appell, P. and Kampe de Feriet, J. Fonctions Hypergeometriques et Hyperspheriques-Polyn^omes d' Hermite, Gauthier-Villars, Paris, 1926.
[3] Burchnall, J.L. and Chaundy, T.W., Expansions of Appell's double hypergeometric functions (II), Quart. J. Math. Oxford Ser., Vol 12 (1941), 112-128.
[4] Chhabra, S.P. and Rusia, K.C., A transformation formula for a general hypergeometric function of three variables, J~nanabha, Vol 9 no 10 (1980), 155-159.
[5] Darehmiraki M. and Rezazadeh, A., An ecient numerical approach for solving the variable-order time fractional di usion equation using Chebyshev spectral collocation method, J. Mahani Math. Research, Vol 9 no 2 (2020), 87-107.
[6] Deshpande, V.L., Certain formulas associated with hypergeometric functions of three variables, Pure and Applied Mathematika Sciences, Vol 14 no (1981), 39-45.
[7] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions, Vol. I., McGraw-Hill Book Company. New York, Toronto and London, 1955.
[8] Hai, N.T., Marichev, O.I. and Srivastava, H.M., A note on the convergence of certain families of multiple hypergeometric series, J. Math. Anal. Appl., Vol 164 no (1992),104-115.
[9] Humbert, P., La fonction Wk;1;2;:::;n(x1; x2; :::; xn)., C. R. Acad. Sci. Paris, Vol 171 (1920), 428-430.
[10] Humbert, P., The con uent hypergeometric functions of two variables, Proc. Royal Soc. Edinburgh Sec. A, Vol 41 (1920-21), 73-84.
[11] Humbert, P., The con uent hypergeometriques d' order superieur a deux variables, C. R. Acad. Sci. Paris, Vol 173 (1921), 73-84.
[12] Jain, M.K, Iyengar, S.R.K. and Jain, R.K., Numerical Methods for Scienti c and Engineering Computation. Seventh Edition, New Age International (P) Limited, Publishers London, New Delhi, Nairobi, 2019.
[13] Kampe de Feriet, J., Les fonctions hypergeometriques d'ordre superieur a deux variables, CR Acad. Sci. Paris, Vol 173 (1921), 401-404.
[14] Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo, Vol 7 (1893), 111-158.
[15] Lebedev, N.N., Special Functions and their Applications, translated by Richard A. Silverman, Prentice-hall, Inc, Englewood Cli s, N.J., 1965.
[16] Luke, Y.L., The Special Functions and Their Approximations, Vol. I, Academic Press, 1969.
[17] Mathai, A.M. and Saxena, R.K., Lecture notes in Mathematics No.348: Generalized hypergeometric functions with Applications in statistics and physical sciences, Springer-Verlag, Berlin Heidelberg, New York, 1973.
[18] Prudnikov, A.P., Brychknov, Yu. A. and Marichev, O.I., Integrals and Series, Vol. III: More special functions, Nauka Moscow, 1986 (in Russian);(Translated from the Russian by G.G.Gould), Gordon and Breach Science Publishers, New York, Philadelphia London, Paris, Montreux, Tokyo, Melbourne, 1990.
[19] Rainville, E.D., Special Functions, The Macmillan Co. Inc., New York 1960; Reprinted by Chelsea publ. Co., Bronx, New York, 1971.
[20] Saran, S., Hypergeometric functions of three variables, Ganita Vol 5 (1954), 71-91.
[21] Saran, S., Corrigendum, Hypergeometric functions of three variables, Ganita Vol 7 (1956), 65.
[22] Srivastava, H.M., Hypergeometric functions of three variables, Ganita Vol 15 (1964), 97-108.
[23] Srivastava, H.M., Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo Vol 2 no 16 (1967), 99-115.
[24] Srivastava, H.M., Generalized Neumann expansions involving hypergeometric functions, Cambridge Philos. Soc. Vol 63 (1967), 425-429.
[25] Srivastava, H.M. and Choi, J., Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012.
[26] Srivastava, H.M. and Manocha, H.L., A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
[27] Srivastava, H.M. and Panda, R., An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. Vol 12 no 2 (1976), 419-425.