Analytical expression for the exact curved surface area and volume of hyperboloid of two sheets via Mellin-Barnes type contour integration

Document Type : Research Paper

Authors

1 Centre for Mathematical and Statistical Sciences (CMSS), Peechi, Thrissur-680653, Kerala, India

2 Department of Mathematics, Aligarh Muslim University, Aligarh-202002, U.P., India

3 Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi-110025, India.

Abstract

In this article, we aim at obtaining the analytical expression (not previously found and recorded in the literature) for the exact curved surface area of a hyperboloid of two sheets in terms of Appell's double hypergeometric function of second kind and triple hypergeometric function of Srivastava. The derivation is based on Mellin-Barnes type contour integral representations of generalized hypergeometric function$~_pF_q(z)$,  Meijer's $G$-function and series manipulation technique. Further, we also obtain the formula for the volume of hyperboloid of two sheets. The closed forms for the exact curved surface area and volume of the hyperboloid of two sheets are also verified numerically by using  Mathematica Program.

Keywords


[1] Andrews, G.E., Askey, R. and Roy, . Special Functions, Cambridge University Press, Cambridge, UK, 1999.
[2] Appell, P. and Kampe de Feriet, J. Fonctions Hypergeometriques et Hyperspheriques-Polyn^omes d' Hermite, Gauthier-Villars, Paris, 1926.
[3] Burchnall, J.L. and Chaundy, T.W., Expansions of Appell's double hypergeometric functions (II), Quart. J. Math. Oxford Ser., Vol 12 (1941), 112-128.
[4] Chhabra, S.P. and Rusia, K.C., A transformation formula for a general hypergeometric function of three variables, J~nanabha, Vol 9 no 10 (1980), 155-159.
[5] Darehmiraki M. and Rezazadeh, A., An ecient numerical approach for solving the variable-order time fractional di usion equation using Chebyshev spectral collocation method, J. Mahani Math. Research, Vol 9 no 2 (2020), 87-107.
[6] Deshpande, V.L., Certain formulas associated with hypergeometric functions of three variables, Pure and Applied Mathematika Sciences, Vol 14 no (1981), 39-45.
[7] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions, Vol. I., McGraw-Hill Book Company. New York, Toronto and London, 1955.
[8] Hai, N.T., Marichev, O.I. and Srivastava, H.M., A note on the convergence of certain families of multiple hypergeometric series, J. Math. Anal. Appl., Vol 164 no (1992),104-115.
[9] Humbert, P., La fonction Wk;1;2;:::;n(x1; x2; :::; xn)., C. R. Acad. Sci. Paris, Vol 171 (1920), 428-430.
[10] Humbert, P., The con uent hypergeometric functions of two variables, Proc. Royal Soc. Edinburgh Sec. A, Vol 41 (1920-21), 73-84.
[11] Humbert, P., The con uent hypergeometriques d' order superieur a deux variables, C. R. Acad. Sci. Paris, Vol 173 (1921), 73-84.
[12] Jain, M.K, Iyengar, S.R.K. and Jain, R.K., Numerical Methods for Scienti c and Engineering Computation. Seventh Edition, New Age International (P) Limited, Publishers London, New Delhi, Nairobi, 2019.
[13] Kampe de Feriet, J., Les fonctions hypergeometriques d'ordre superieur a deux variables, CR Acad. Sci. Paris, Vol 173 (1921), 401-404.
[14] Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo, Vol 7 (1893), 111-158.
[15] Lebedev, N.N., Special Functions and their Applications, translated by Richard A. Silverman, Prentice-hall, Inc, Englewood Cli s, N.J., 1965.
[16] Luke, Y.L., The Special Functions and Their Approximations, Vol. I, Academic Press, 1969.
[17] Mathai, A.M. and Saxena, R.K., Lecture notes in Mathematics No.348: Generalized hypergeometric functions with Applications in statistics and physical sciences, Springer-Verlag, Berlin Heidelberg, New York, 1973.
[18] Prudnikov, A.P., Brychknov, Yu. A. and Marichev, O.I., Integrals and Series, Vol. III: More special functions, Nauka Moscow, 1986 (in Russian);(Translated from the Russian by G.G.Gould), Gordon and Breach Science Publishers, New York, Philadelphia London, Paris, Montreux, Tokyo, Melbourne, 1990.
[19] Rainville, E.D., Special Functions, The Macmillan Co. Inc., New York 1960; Reprinted by Chelsea publ. Co., Bronx, New York, 1971.
[20] Saran, S., Hypergeometric functions of three variables, Ganita Vol 5 (1954), 71-91.
[21] Saran, S., Corrigendum, Hypergeometric functions of three variables, Ganita Vol 7 (1956), 65.
[22] Srivastava, H.M., Hypergeometric functions of three variables, Ganita Vol 15 (1964), 97-108.
[23] Srivastava, H.M., Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo Vol 2 no 16 (1967), 99-115.
[24] Srivastava, H.M., Generalized Neumann expansions involving hypergeometric functions, Cambridge Philos. Soc. Vol 63 (1967), 425-429.
[25] Srivastava, H.M. and Choi, J., Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012.
[26] Srivastava, H.M. and Manocha, H.L., A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
[27] Srivastava, H.M. and Panda, R., An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. Vol 12 no 2 (1976), 419-425.
[28] Wolfram research, Meijer G- function: speci c values (subsection 03/01), http://functions.wolfram.com/HypergeometricFunctions/MeijerG/03/01/Show All.html: 1-99.