[1] M. V. Aarset, How to identify a bathtub hazard rate, IEEE Transactions on Reliability vol. 36, no. 1 (1987) 106{108.
[2] A. A. H. Ahmadini, A. Hassan, M. Elgarhy, M. Elsehetry, S. S. Alshqaq and S. G. Nassr, Inference of truncated Lomax inverse Lomax distribution with applications, INTELLI-GENT A UTOMATION AND SOFT COMPUTING vol. 29, no. 1 (2021) 199{212.
[3] W. Barreto-Souza and A. B. Simas, The exp-G family of probability distributions, Brazilian Journal of Probability and Statistics vol. 27, no.1 (2013) 84{109.
[4] H. D. Brunk, R. E. Barlow, D. J. Bartholomew and J. M. Bremner, Statistical Inference under Order Restrictions, John Wiley & Sons, New York, 1972.
[5] G. L. Ghai and J. Mi, Mean residual life and its association with failure rate, IEEE Transactions on Reliability vol. 48, no. 3 (1999) 262{266.
[6] N. H. Golzar, M. Ganji and H. Beverani, The Lomax-Exponential distribution, some properties and applications, Journal of Statistical Research of Iran vol. 13, no. 2 (2016) 131{153.
[7] N. A. Hussain, S. I. S. Doguwa and A. Yahaya, The Weibull-Power Lomax distribution: properties and application, Communication in Physical Sciences vol. 6, no. 2 (2020) 869{881.
[8] A. Hassan, M. Sabry, and A. Elsehetry, A new probability distribution family arising from truncated power Lomax distribution with application to Weibull model, Pakistan Journal of Statistics and Operation Research vol. 16, no. 4 (2020) 661{674.
[9] M. Ijaz and S. M. Asim, Lomax exponential distribution with an application to real-life data, PloS one vol. 14, no. 12 (2019) e0225827.
[10] H. Li and W. Tian, Slashed Lomax distribution and regression model, Symmetry vol. 12, no. 11 (2020) 1877.
[11] A. Mahdavi, and G. Oliveira Silva, A Method to Expand Family of Continuous Distributions based on Truncated Distributions, Journal of Statistical Research of Iran vol. 13, no. 2 (2017) 231-247.
[12] R. S. Meshkat, H. Torabi and G. G. Hamedani, A Generalized Gamma-Weibull Distribution: Model, Properties and Applications, Pakistan Journal of Statistics and Operation Research (2016) 201-212.
[13] E. H. A. Rady, W. A. Hassanein and T. A. Elhaddad, The power Lomax distribution with an application to bladder cancer data, SpringerPlus vol. 5, no. 1 (2016) 1-22.
[14] A. Renyi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, The Regents of the University of California (1961).
[15] C. E. Shannon, Prediction and entropy of printed English, Bell Labs Technical Journal vol. 30, no. 1 (1951) 50-64.