On timelike hypersurfaces of the Minkowski 4-space with 1-proper second mean curvature vector

Document Type : Research Paper

Authors

Department of Mathematics, University of Maragheh, P.O.Box 55181-83111, Maragheh, Iran

Abstract

The mean curvature vector field of a submanifold in the Euclidean $n$-space is said to be $proper$ if it is an eigenvector of the Laplace operator $\Delta$. It is proven that every hypersurface with proper mean curvature vector field in the Euclidean 4-space ${\Bbb E}^4$ has constant mean curvature. In this paper, we study an extended version of the mentioned subject on timelike (i.e., Lorentz) hypersurfaces of Minkowski 4-space ${\Bbb E}^4_1$. Let ${\textbf x}:M_1^3\rightarrow{\Bbb E}_1^4$ be the isometric immersion of a timelike hypersurface $M^3_1$ in ${\Bbb E}_1^4$. The second mean curvature vector field ${\textbf H}_2$ of $M_1^3$ is called {\it 1-proper} if it is an eigenvector of the Cheng-Yau operator $\mathcal{C}$ (which is the natural extension of $\Delta$). We show that each $M^3_1$ with 1-proper ${\textbf H}_2$ has constant scalar curvature. By a classification theorem, we show that such a hypersurface is $\mathcal{C}$-biharmonic, $\mathcal{C}$-1-type or  null-$\mathcal{C}$-2-type. Since the shape operator of $M^3_1$ has four possible matrix forms, the results will be considered in four different cases.

Keywords


[1] K. Akutagawa, S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicata vol. 164 (2013) 351{355.
[2] L. J. Alias, N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata vol. 121 (2006) 113{127.
[3] Y. Aleksieva, G. Ganchev, V. Milousheva, On the theory of Lorentz surface with parallel normaized mean curvature vector  eld in pseudo-Euclidean 4-space, J. Korean Math. Soc. vol. 53, no. 5 (2016) 1077{1100 .
[4] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, Hypersurfaces in E4 s with proper mean curvature vector, J. Math. Soc. Japan vol. 59 (2007) 797{809.
[5] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, B. J. Papantoniou, Biharmonic Lorentz hypersurfaces in E4 1 , Paci c J. Math. vol. 229 (2007) 293{306.
[6] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 2nd World Scienti c Publishing Co, Singapore, 2014.
[7] B. Y. Chen, Some open problems and conjetures on submanifolds of  nite type, Soochow J. Math. vol. 17 (1991) 169{188.
[8] F. Defever, Hypersurfaces of E4 satisfying ~H = ~H, Michigan. Math. J. vol. 44 (1997) 355{363.
[9] I. Dimitric, Submanifolds of En with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin. vol. 20 (1992) 53{65.
[10] T. Hasanis, T. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector  eld, Math. Nachr. vol. 172 (1995) 145{169.
[11] S. M. B. Kashani, On some L1- nite type (hyper)surfaces in Rn+1, Bull. Korean Math. Soc. vol. 46, no. 1 (2009) 35{43.
[12] P. Lucas, H. F. Ramirez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying Lk = A + b, Geom. Dedicata vol. 153 (2011) 151{175.
[13] M. A. Magid, Lorentzian isoparametric hypersurfaces, Paci c J. of Math. vol. 118, no. 1 (1985) 165{197.
[14] B. O'Neill, Semi-Riemannian Geometry with Applicatins to Relativity, Acad. Press Inc., 1983.
[15] F. Pashaie, S. M. B. Kashani, Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying Lkx = Ax + b, Bull. Iran. Math. Soc. vol. 39, no. 1 (2013) 195{213.
[16] F. Pashaie, S. M. B. Kashani, Timelike hypersurfaces in the Lorentzian standard space forms satisfying Lkx = Ax + b, Mediterr. J. Math. vol. 11, no. 2 (2014) 755{773.
[17] A. Z. Petrov, Einstein Spaces, Pergamon Press, Hungary, Oxford and New York, 1969.
[18] F. Torralbo, F. Urbano, Surfaces with parallel mean curvature vector in S2  S2 and H2  H2, Trans. of the Amer. Math. Soc. vol. 364, no. 2 (2012) 785{813.