[1] Becker. J,Lownersche di erentialgleichung and quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math., 255 (1972), 23{43.
[2] Becker. J, Pommerenke. C, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math., 354 (1984), 74{94.
[3] Bhowmik. B, Ponnusamy. S, Wirths. K. J, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math., 354 (1984), 74{94.
[4] Duren. P, A Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, (1983).
[5] Ma. W. C, Minda. D, A uni ed treatment of some special classes of univalent function, in: Proceedings of the Conference on Complex Analysis, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA. (Tianjin, 1992), 157-169.
[6] Mendiratta. R, Nagpal. S, Ravichandran. V, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365{386.
[7] Najafzadeh. Sh, Rahmatan. H, Haji. H, Application of subordination for estimating the Hankel determinant for subclass of univalent functions, Creat. Math. Inform, 30(2021), 69{74.
[8] Rana. S, Goswami. P, Dubey. R. S, The norm of pre-Schwarzian derivative on subclasses of bi-univalent functions, AIMS Mathematics, 3(4)(2018), 600{607
[9] Raina. R. K, Sokol. J, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 973{978.
[10] Rahmatan. H, Shokri. A, Ahmad. H, Botmart. T Subordination Method for the Estimation of Certain Subclass of Analytic Functions De ned by the q-Derivative Operator, Journal of Function Spaces, Volume 2022, Article ID 5078060, 9 pages
[11] Rahmatan. H, Haji. H, Najafzadeh. SH, Coecient estimates and Fekete-Szego coecient inequality for new subclasses of Bi-univalent functions, Caspian Journal of Mathematical Sciences, 10(1)(2021), 39{50.
[12] Rahmatan. H, Najafzadeh. SH, Haji. H, Initial coecient bounds for interesting subclasses of meromorphic and bi-univalent functions, J. Mahani Math. Res. Cent. 11(2)(2022), 9{17.
[13] Sharma. K, Jain. N. K, Ravichandran. V,Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923{939.
[14] Srivastava. H. M, Mishra. A. K and Gochhayat. P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. vol. 23(2010), pp. 1188{1192.
[15] Sugawa. T,On the norm of pre-Schwarzian derivatives of strongly starlike functions, Kyoto University. 9(1997), 178{185.
[16] Yamashita. S, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J., 28 (1999), 217{230.