[1] Badri, M. A., Mortagy, A. K., Alsayed, C. A., A multi-objective model for locating restations, European Journal of Operational Research, 110 (1998) 243-260.
[2] Brimberg J., Juel, H., A bicriteria model for locating a semi-desirable facility in the plane, European Journal of Operational Research 106 (1998) 144-151.
[3] Current, J., Min, H., Schilling, D., Mutiobjective analysis of facility location decisions, European Journal of Operational Research, 49 (1990) 295-307.
[4] Drezner Z., Hamacher H. W., Facility Location: Application and Theory, Springer, Berlin, 2002.
[5] Drezner, Z., Suzuki, A., The big trinangle small triangle method for the solution of nonconvex facility location problems, Operations Research, 52 (2004) 128-135.
[6] Dvorak, T., Vlkovsky, M., Supply chain optimization models in the area of operation, Science & Military 1 (2011) 20-24.
[7] Ehrgott, M., Multicriteria Optimization, Springer, Berlin, 2005.
[8] Ehrgott, M., Hamacher, H. W., Nickel, S., Geometric methods to solve max-ordering location problems, Discrete Applied Mathematics, 93(1) (1999) 3-20.
[9] Eichfelder, G., Warnow, L., An approximation algorithm for multi-objective optimization problems using a box-coverage, Journal of Global Optimization 83 (2022) 329-357.
[10] Eiselt, H. A., Laporte, G., Facility Location: A survey of Application and Methods, Springer, Berlin, 1995.
[11] Engau, A., Wiecek, M., Exact generation of epsilon-ecient solutions in multiple objective programming, OR Spectrum, 29 (2007) 335-350.
[12] Engau, A., Wiecek, M., Generation "ecient solutions in multiobjective programming, European Journal of Operational Research, 177 (2007) 1566-1579.
[13] Farahani, R. Z., SteadieSei , M., Asgari, N., Multiple criteria facility location problems: A survey, Applied Mathematical Modelling, 34 (2010) 1689-1709.
[14] Hamacher, H. W., Nickel, S., Multicriteria planar location problems, European Journal of Operational Research, 94 (1996) 66-86.
[15] Hansen, P., Peeters, D., Richard, D., Thisse, J. F., The minisum and minimax location problems revisited, Operations Research, 33 (1985) 1251-1265.
[16] Hekmatfar, M., SteadieSei , M., Multi-criteria location problem, In: R.Z. Farahani and M. Hekmatfar (eds.), Facility Location: Concepts, Models, Algorithms and Case Studies, Contributions to Management Science, Physica-Verlag, Heidelberg, 2009, pp. 373-393.
[17] Loridan, P., "e-solutions in vector minimization problems, Journal of Optimization Theory and Applications, 43 (1984) 265-276.
[18] McGinnis, L. F., White, J. A., A single facility rectilinear location problem with multiple criteria. Transportation Science, 12 (1978) 217-231.
[19] Nickel, S., Puerto, J., Rodriguez-Chia, A. M., Weissler, A., Multicriteria planar ordered median problems, Journal of Optimization Theory and Applications, 126(3) (2005) 657-683.
[20] Ohsawa, Y., Ozaki, N., Plastria, F., Equity-eciency bicriteria location with squared Euclidean distances, Operations Research, 56(1) (2008) 79-87.
[21] Plastria, F., GBSSS: the generalized big square small square method for planar single-facility location, European Journal of Operational Research, 62 (1992) 163-174.
[22] Pourkarimi, L., Yaghoobi, M. A., Mashinchi, M., Ecient Curve Fitting: An Application of Multiobjective Programming, Applied Mathematical Modelling, 35 (1) (2011) 346-365.
[23] Rakas, J., Teodorovic, D., Kim, T., Multi-objective modeling for determining location of undesirable facilities, Transportation Research Part D, 9 (2004) 125-138.
[24] Schobel, A., Scholz, D., The big cube small cube solution method for multidimensional facility location problems, Computers & Operations Research, 37 (2010) 115-122.
[25] Scholz, D., The multicriteria big cube small cube method, Top, 18 (2010) 286-302.
[26] Skriver A. J. V., Anderson, K. A., The bicriterion semi-obnoxious location (BSL) problem solved by an "e-approximation, European Journal of Operational Research 146 (2003) 517-528.
[27] Steuer, R. E., Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley & Sons, New York, 1986.
[28] Thomann, J., Eichfelder, G., Numerical results for the multiobjective trust region algorithm MHT, Data in Brief, 25 (2019) 104103.
[29] Yaghoobi, M. A., Pourkarimi, L., Mashinchi, M., A multiobjective based approach for mathematical programs with linear exible constraints, Applied Mathematical Modelling, 36 (2012) 6264-6274.