[1] M. H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani. A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, Journal of Computational Physics, 270 (2014) 402-415.
[2] E. Babolian, M. Mordad. A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Computers and Mathematics with Applications, 62 (2011) 187-198.
[3] M. H. Heydari, M.R. Hooshmandasl, F. M. Maalek Ghaini, C. Cattani. An ecient computational method for solving nonlinear stochastic Ito integral equations: Application for stochastic problems in physics, Journal of Computational Physics, 283 (2015) 148-168.
[4] F. Mirzaee, E. Hadadiyan. Application of two-dimensional hat functions for solving space-time integral equations, J. Appl. Math. Comput, 4 (2015) 1-34.
[5] M. Safavi, A.A. Khajehnasiri. Numerical solution of nonlinear mixed Volterra-Fredholm integro-di erential equations by two-dimensional block-pulse functions, Cogent Mathematics and Statistics, 5 (2018) 1-12.
[6] M.P. Tripathi, V. K. Baranwal, R. K. Pandey, O. P. Singh. A new numerical algorithm to solve fractional di erential equations based on operational matrix of generalized hat functions, Commun Nonlinear Sci Numer Simulat, 18 (2013) 1327-1340.
[7] H. Rahmani Fazli, F. Hassani, A. Ebadian, A. A. Khajehnasiri. National economies in state-space of fractional-order nancial system, Afrika Matematika, 10 (2015) 1-12.
[8] M. Saeedi, M.M. Moghadam. Numerical solution of nonlinear Volterra integrodi erential equations of arbitrary order by CAS Wavelets, Commun Nonlinear Sci Numer Simulat, 16 (2011) 1216-1226.
[9] C. Shekher Singh, H. Singh Vineet, K. Singh, O. P. Singh Fractional order operational matrix methods for fractional singular integro-di erential equation, Applied Mathematical Modelling, 40 (2016) 10705-10718.
[10] S. Momani, M. A. Noor. Numerical methods for fourth-order fractional integrodi erential equations, Appl. Math. Comput, 182 (2006) 754-760.
[11] M. Safavi, A. A. Khajehnasiri. Numerical solution of nonlinear mixed Volterra-Fredholm integro-di erential equations by two-dimensional block-pulse functions, Cogent Mathematics & Statistics, 1 (2018) 152-184 .
[12] M. Safavi, A. A. Khajehnasiri, A. Jafari, J. Banar. A New Approach to Numerical Solution of Nonlinear Partial Mixed Volterra-Fredholm Integral Equations via Two-Dimensional Triangular Functions, Malaysian Journal of Mathematical Sciences, 3 (2021) 489{507.
[13] M. Abbaszadeh, M. Dehghan, A Galerkin meshless reproducing kernel particle method for numerical solution of neutral delay time-space distributed-order fractional damped di usion-wave equation, Applied Numerical Mathematics, 169 (2021) 44-63.
[14] H. Saeedi, G. N. Chuev Triangular functions for operational matrix of nonlinear fractional Volterra integral equations, Journal of Applied Mathematics and Computing, 49 (2015) 213-232.
[15] M. M. Moghadam, H.Saeedi, N. Razaghzadeh, A spectral Chelyshkov wavelet method to solve systems of nonlinear weakly singular Volterra integral equations, Journal of mahani mathematical research center, 9 (2020) 1-20.
[16] S. Ahmad, A. Ahmad, K. Ali, H. Bashir, M. F. Iqbal. E ect of non-Newtonian ow due to thermally-dependent properties over an inclined surface in the presence of chemical reaction, Brownian motion and thermophoresis, Alexandria Engineering Journal, 221 (2021) 4931-4945.
[17] A. A. Khajehnasiri. Numerical Solution of Nonlinear 2D Volterra-Fredholm Integro-Di erential Equations by Two-Dimensional Triangular Function, Int. J. Appl. Comput.Math 2, (2016) 575-591.
[18] X. Li, H. Li, B. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments Applied Mathematics and Computation, 349 (2019) 304-313.
[19] S. G. Esfahani, S. S. Foroushani, M. Azhari, On the use of reproducing kernel particle nite strip method in the static, stability and free vibration analysis of FG plates with di erent boundary conditions and diverse internal supports, Applied Mathematical Modelling, 92 (2021), 380-409
[20] A.A. Khajehnasiri, M. Safavi, Solving fractional Black{Scholes equation by using Boubaker functions, Mathematical Methods in the Applied Sciences, 11 (2022) 8505-8515.
[21] M. Safavi, A.A. Khajehnasiri, Solutions of the Rakib-Sivashinsky Equation With Time-and Space-Fractional Derivatives, Southeast Asian Bulletin of Mathematics, 5 (2015) 695{704.
[22] S. Chena S. Soradi Zeid, H. Dutta, M. Mesrizadehd, Y. Chu, Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay Chaos, Solitons and Fractals, 144 (2021) 755-761.
[23] T. Allahviranloo, H. Sahihi, Reproducing kernel method to solve fractional delay di erential equations, Applied Mathematics and Computation, 400 (2021) 2419-2435.
[24] N. Boudi, Z. Ennadi , Change of representation and the rigged Hilbert space formalism in quantum mechanics, Reports on Mathematical Physics, 87 (2021) 145-166.
[25] F. Mirzaee, E. Hadadiyan. Numerical solution of linear Fredholm integral equations via two-dimensional modi cation of hat functions, Applied Mathematics and Computation 250 (2015) 805-816.
[26] ] I. Podlubny. Fractional Di erential Equations, Academic Press, San Diego, 1999.