Two-sided sgut-majorization and its linear preservers

Document Type : Research Paper

Author

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran

Abstract

Let Mn,m be the set of all n-by-m real matrices, and let Rn be  the set of all n-by-1 real vectors. An n-by-m matrix R=[rij] is called g-row substochastic if k=1mrik1  for all i (1in).  For x, yRn, it is said that x is sgut-majorized by y, and we write  xsguty  if there exists an n-by-n upper triangular g-row substochastic matrix R such that x=Ry. Define the relation sgut as follows. xsguty if and only if x is   sgut-majorized  by y and y is sgut-majorized  by x.  This paper characterizes all (strong)  linear preservers   of  sgut on Rn.

Keywords


[1] T. Ando, Majorization, doubly stochastic matrices, and comparision of eigenvalues, Linear Algebra Appl., 118 (1989), pp. 163-248.
[2] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl., 199 (1994), pp. 17-67.
[3] A. Armandnejad and Z. Gashool, Strong linear preservers of g-tridiagonal majorization on Rn, Electronic. J. Linear Algebra, 23 (2012), pp. 115-121.
[4] A. Armandnejad and A. Ilkhanizadeh Manesh, Gut-majorization and its linear preservers, Electronic. J. Linear Algebra, 23 (2012), pp. 646-654.
[5] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear and Multilinear Algebra, 53 (2005), pp. 1-11.
[6] G.H. Hardy, J.E. Littlewood, and G. Polya, Some simple inequalities satisfed by convex functions., Messenger of Mathematics , 58 (1929), pp. 145-152.
[7] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra, 15 (2006), pp. 260-268.
[8] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl, 423 (2007), pp. 255-261.
[9] A. Ilkhanizadeh Manesh, On linear preservers of sgut-majorization on Mn;m, Bull. Iranian Math. Soc., 42 (2016), pp. 470-481.
[10] A. Ilkhanizadeh Manesh, Right gut-Majorization onMn;m, Electron. J. Linear Algebra, 31 (2016), pp. 13-26.
[11] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, 2011.
[12] I. Schur, Uber enie klasse von mittelbildungen mit anwendungen auf die determinan-tentheorie, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22 (1923), pp.9-20.