[1] A. Abkar, M. Gabeleh, Proximal quasi-normal structure and a best proximity point theorem, J. Nonlinear Convex Anal. vol. 14, no. 4 (2013) 653{659.
[2] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. vol. 25 (1972) 727{730.
[3] CM. Chen, Fixed point theorems of generalized cyclic orbital Meir-Keeler contractions, Fixed Point Theory Appl. vol. 91 (2013) 10 pages.
[4] Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer .Math. Soc. vol. 45, no. 2 (1974) 267{273.
[5] R. Espnola, A. Fernandez-Leon, On best proximity points in metric and Banach space, Canad. J. math. vol. 63, no. 3 (2011) 533{550.
[6] A. Fernandez-Leon, M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory vol. 17, no. 1 (2016) 63{84.
[7] B. Fisher, Quasicontractions on metric spaces, Proc. Amer. Math. Soc. vol. 75, no.2 (1979) 321{325.
[8] M. Gabeleh, Best proximity points and xed point results for certain maps in Banach spaces, Numer. Funct. Anal. Optim. vol. 36 (2016) 167{188.
[9] M. Gabeleh, N. Shahzad, Best proximity pair and xed point results for noncyclic mappings in convex metric spaces, Filomat vol. 30, no. 12 (2016), 3149{3158.
[10] R. Kannan, Some results on xed points, Bull. Calcutta Math. Soc. vol. 10 (1968) 71{76.
[11] E. Karapinar, H. K. Nashine, Fixed point theorem for cyclic Chatterjea type contractions, J. Appl. Math. vol. 2012 (2012) 15 pages.
[12] E. Karapinar, S. Romaguera, K. Tas, Fixed points for cyclic orbital generalized contractions on complete metric spaces Cent. Eur. J. Math. vol. 11 (2013) 552{560.
[13] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. vol. 74 (2011) 1040{1046.
[14] S. Karpagam, B. Zlatanov, Best proximity point of p-cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. Model. Control vol. 21, no. 6 (2016) 790{806.
[15] F. Kiany, A. Amini-Harandi, Fixed point theory for generalized Ciric quasi-contraction maps in metric spaces, Fixed Point Theory Appl. vol. 26 (2013) 6 pages.
[16] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cylical contractive contractions, Fixed Point Theory vol. 4, no. 1 (2003) 79{89.
[17] P. Kumam, N. V. Dung, K. Sitthithakerngkiet, A generalization of Ciric xed point theorems, Filomat vol. 29, no. 7 (2015) 1549{1556.
[18] M. A. Petric, Best proximity point theorems for weak cyclic Kannan contractions, Filomat vol. 25 (2011) 145{154.
[19] M. Petric, B. G. Zlatanov, Fixed point theorems of Kannan type for cyclical contractive conditions, University Press Paisii Hilendarski, (Plovdiv, Bulgaria 2010).
[20] T. Suzuki, M. Kikawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. vol. 71 (2009) 2918{2926.