Some criteria for solvability and supersolvability

Document Type : Research Paper

Authors

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran

Abstract

Denote by $ G $ a finite group, by  $ {\rm hsn}(G) $ the harmonic mean Sylow number (eliminating the Sylow numbers that are one) in $G$ and by    $ {\rm gsn}(G) $ the geometric mean Sylow number (eliminating the Sylow numbers that are one) in $G$. In this paper, we prove that if either $ {\rm hsn}(G)<45/7 $ or  $ {\rm gsn}(G)< \sqrt[3]{300} $, then $G$ is solvable. Also, we show that if either $ {\rm hsn}(G)<24/7 $ or  $ {\rm gsn}(G)<\sqrt{12} $, then $G$ is supersolvable.

Keywords


[1] C. S. Anabanti, A. Moreto and M. Zarrin, Influence of the number of Sylow subgroups on solvability of  nite groups, Comptes Rendus Mathematique vol. 358, no. 11-12 (2020) 1227-1230.
[2] M. Baniasad Azad, B. Khosravi, A criterion for solvability of a  nite group by the sum of element orders, Journal of Algebra vol. 516, (2018) 115{124.
[3] M. Baniasad Azad, B. Khosravi, Properties of  nite groups determined by the product of their element orders, Bulletin of the Australian Mathematical Society vol. 103, no. 1 (2021) 88{95.
[4] N. Chigira, Number of Sylow subgroups and p-nilpotence of  nite groups, Journal of Algebra vol. 201, no. 1 (1998) 71{85.
[5] The GAP Group, GAP{Groups, Algorithms, and Programming, Version 4.4.12, (2008). http:www.gap-system.org/gap.
[6] M. Hall Jr., On the number of Sylow subgroups in a  nite group, Journal of Algebra vol. 7, no. 3 (1967) 363{371.
[7] J. Lu, W. Meng, A. Moreto and K. Wu, Note on the average number of Sylow subgroups of  nite groups, Czechoslovak Mathematical Journal vol. 71, (2021) 1129{1132
[8] A. Moreto, Groups with two Sylow numbers are the product of two nilpotent Hall sub-groups, Archiv der Mathematik vol. 99, no. 4 (2012) 301{304. DOI: 10.1007/s00013-012-0429-4
[9] A. Moreto, The average number of Sylow subgroups of a  nite group Mathematische Nachrichten vol. 287, no. 10 (2014) 1183{1185.
[10] S. M. Robati, A solvability criterion for  nite groups related to the number of Sylow subgroups, Communications in Algebra vol. 48, no. 12 (2020) 5176{5180. DOI: 10.1080/00927872.2020.1782418
[11] J. Zhang, Sylow numbers of  nite groups, Journal of Algebra vol. 176, (1995) 111{123.