A Subclass of bi-univalent functions by Tremblay differential operator satisfying subordinate conditions

Document Type : Research Paper

Authors

1 Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran

2 Department of Mathematics, Urmia University, Urmia, Iran

Abstract

In this paper, we introduce a newly defined  subclass $\mathcal{S}_{\Sigma}(\vartheta,\gamma,\eta;\varphi) $ of bi-univalent functions by using the Tremblay differential operator satisfying subordinate conditions in the unit disk. Moreover, we use the Faber polynomial expansion to derive bounds for the Fekete-Szego problem and first two \emph{Taylor-Maclaurin coefficients} $|a_2|$ and $|a_3|$ for functions of this class.

Keywords


[1] H. Airault, Symmetric sums associated to the factorization of Grunsky coefficients, in conference, Groups and symmetries, Montrea, Canada, April, 2007.
[2] H. Airault, Remarks on Faber polynomials, Int. Math. forum 3, 9 (2008), 449 − 456.
[3] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130, 3 (2006), 179 − 222.
[4] H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull, Sci. Math. 126, 5 (2002), 343 − 367.
[5] R. M. Ali, S. K. Lee, V. Ravichandran, S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012),344 − 351.
[6] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344 − 351.
[7] S. Altınkaya, S. Yalçın, Faber polynomial coefficient estimates for bi-univalent functions of complex order based on subordinate conditions involving of the Jackson (p, q)-derivative operator, Miskolc Mathematical Notes, 18, 2 (2017), 555 − 572.
[8] D. A. Brannan, J. G. Clunie, Spects of contemporary Complex Analysis, Academic Press, New York, NY, USA, 1980.
[9] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math 31 (1986), 70 − 77.
[10] E. Deniz, J. M. Jahangiri, S. G. Hamidi, S. S. Kina, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Inequal. 12 (2018), 645 − 653.
[11] E. Deniz, M. Kamali, S. Korkmaz, A certain subclass of bi-univalent functions associated with Bell numbers and q−Srivastava Attiya operator, AIMS Mathematics, 5, 6 (2020),7259 − 7271.
[12] P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften 259 Springer-Verlag New York, Berlin, Heidelberg, Tokyo, 1983.
[13] G. Faber, Uber polynomische entwickelungen, Math. Ann. 57 (1903), 1569 − 1573.
[14] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris Sér. I 354 (2016), 365 − 370.
[15] M. F. Khan, Sh. Khan, N. Khan, J. Yuonis, B. Khan, M. Rashid, Applications of q-Symmetric Derivative Operator to the Subclass of Analytic and Bi-Univalent Functions Involving the Faber Polynomial Coefficients, Mathematical Problems in Engineering, Hindawi (2022), 1 − 9.
[16] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of q-derivative operator to the subclass of bi-univalent functions involving q-chebyshev polynomials, Journal of Mathematics (2022), 1 − 7.
[17] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. AM. Math. Soc. 18 (1967), 63 − 68.
[18] W. C. Ma, D. Minda, A unified treatment of some special classes of unvalent functions, in Proceedings of the Conference on complex analysis, (Tianjin, 1992), 157 − 169.
[19] H. Orhan, N. Magesh, V. K. Balaji, Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat. 27 (2016), 889 − 897.
[20] A. B. Patil, T. G. Shaba, On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions, Applied Sciences 23 (2021), 122 − 130.
[21] F. M. Sakar, A. Akgul, Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator, AIMS Mathematics 7, 4 (2022), 5146 − 5155.
[22] H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831 − 842.
[23] H. M. Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Trembley fractional derivative operator, Bull. Iran. Math. Soc. 44 (2018), 149 − 157.
[24] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), 693 − 706.
[25] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclassses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188 − 1192.
[26] H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator, Mathematics 8, 2 (2020), 1 − 12.
[27] H. M. Srivastava, T. G. Shaba, G. Murugusundaramoorthy, A. K. Wanas, G. Oros, The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator, AIMS Mathematics 8,1 (2022), 340 − 360.