Quantitative and stability study of the evolution of a viscoelastic body

Document Type : Research Paper

Authors

Institut de Mathématiques et de Sciences Physiques, Porto-Novo, Bénin

Abstract

This paper deals with a generalization of the model describing the evolution of a linear viscoelastic body studied by Kirane M. and B.S. Houari in 2011. We prove the existence and uniqueness of the solution of the model using a $C_0$-semi-group contraction method with a linear operator parameter. Moreover the strong stability of the solution is shown in a particular case.

Keywords


[1] Amendola G., S. Carillo, J.M. Golden and A. Manes, Viscoelastic fluids : free energies, di erential problems and  asymptotic behaviour, Discrete and Continuous Dynamical Systems- Series B, vol. 19, pp.1815-1835, 2014.
[2] Brezis H. Analyse fonctionnelle, Masson, 1987
[3] Carillo S. , Valente V. and G. Vergara Ca arelli, A result of existence and uniqueness for an integro-di erential system in magneto-viscoelasticity, Apllicable Analisys, vol. 90, pp. 1791-1802, 2010.
[4] Carillo S. , V. Valente and G. Ca arelli, A linear viscoelasticity problem with a singular memory kernel : an existence and uniqueness result, Di erential and integral Equations, vol. 26, pp. 1115-1125, 2013.
[5] Carillo S. A 3-dimensional singular kernel problem in viscoelasticity : an existence result, Atti della Accademia Peloritana dei Pericolanti, Classe di scienze Fisiche, Matematiche Naturali, vol. 97(SI), 13 pp, 2019.
[6] Carillo S. , M. Chipot, Valente, and G. Ca arelli, A magneto-viscoelasticity problem with a singular memory kernel, Nonlinear Analysis Series B: Real world Applications, vol. 35C, pp. 200-210, 2017.
[7] Chipot M. , I. Shafrir, V. Valente, and G. Ca arelli, A nonlocal problem arising in the study of magneto-elastic interactions, Boll UMI Serie IX, I, pp. 197-222, 2008.
[8] Chipot M. , I. Shafrir, V. Valente, and G. Ca arelli, One a hyperbolic-parabolic system arising in magnetoelasticity, J. Math. Anal. App, vol. 352, pp. 120-131, 2009.
[9] Kirane M. and B.S. Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys, 62 (2011), 1065-1082.
[10] Mahiuddin Md. , Md. Imran H. Khan, Nghia Duc Pham and M.A. Karim, Developpment of fractional viscoelastic model for characterising viscoelastic properties of food material during drying, Food Bio-science, vol. 23, pp. 45-53, 2018.
[11] Nicaise S. and Pignotti C., Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim, 45(5) (2006), 1561-1585.
[12] PAZY A., Semi group of linear operator and applications to partial di erential equations.
[13] Rassoli A. , N. Fatouraee and R. Guidoin, Structural model for viscoelastic properties of pereicardial bioprosthitic valves, Arti cial Organs, vol. 42, pp. 630-639, 2018.
[14] Shahin-Shamsabadi A. and al, Mechanical, material, and biological study of a PCL/bioactive glass bone sca old: Importance of viscoelasticity, Materials Science and Engineering: C, vol. 90, pp. 280-288, 2018.
[15] Valente V. and G. Vergara Ca arelli, On the dynamics of magneto-elastic interactions: existence of solutions and limit behavior, Asymptotic Analysis, vol. 51, pp. 319-333, 2007.