[1] R. Matsuyama, A. R. Akhmetzhanov, A. Endo, H. Lee, T. Yamaguchi, S. Tsuzuki, and H. Nishiura, Uncertainty and sensitivity analysis of the basic reproduction number of diphtheria: a case study of a Rohingya refugee camp in Bangladesh, November{December 2017, PeerJ, 6:e4583, (2018).
[2] W. O. Kermack, A. G. McKendrick, A contribution to mathematical theory of epidemics, Proc. Roy. Soc. Lond. A., 700-721, (1927).
[3] M. I. Simoya, J. P. Aparicio, Ross-Macdonald Models: Which one should we use? Acta Tropica, 105452, (2020).
[4] A. Zeb, E. Alzahrani, V. S. Ertuk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, Biomed Res Int. Jun 25; 2020:3452402, (2020).
[5] Z. Zhang, A. Zeb, E. Alzahrani, S. Iqbal, Crowding e ects on the dynamics of COVID-19 mathematical model, Adv Di er Equ, 675, (2020).
[6] Z. Zhang, R. Gul, A. Zeb, Global sensitivity analysis of COVID-19 mathematical model, Alex. Eng. J., Volume 60, Issue 1, 565-572, (2021).
[7] M. Hassan, M. Mahmud, K. Nipa, M. Kamrujjaman, Mathematical Modeling and COVID-19 Forecast in Texas, USA: A Prediction Model Analysis and the Probability of Disease Outbreak, Disaster Medicine and Public Health Preparedness, 1-27, (2021).
[8] F. Finger, S. Funk, K. White, R. Siddiqui, W. J. Edmunds, and A. J. Kucharski, Real-time analysis of the diphtheria outbreak in forcibly displaced Myanmar nationals in Bangladesh, BMC Med., (2018).
[9] M. Paoluzzi, N. Gnan, F. Grassi, M. Salvetti, N. Vanacore, and A. Crisanti, A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic, Sci. Rep., 11:24467, (2021).
[10] M. Torrea, J. L. Torrea, and D. Ortegaz, A modeling of a Diphtheria epidemic in the refugees camps, bioRxiv, (2017).
[11] M. S. Mahmud, M. Kamrujjaman, & M. S. Islam, A spatially dependent vaccination model with therapeutic impact and non-linear incidence. LNME, 323e345, (2021).
[12] M. Kamrujjaman, M. S. Mahmud, & M. S. Islam, Dynamics of a di usive vaccination model with therapeutic impact and non-linear incidence in epidemiology. J. Biol. Dyn., 15(sup1), S105eS133, (2020).
[13] K. Sornbundit, W. Triampo, C. Modchang, Mathematical modeling of diphtheria transmission in Thailand, Comput. Biol. Med, 87, 162{168, (2017).
[14] A. Golaz, I. R. Hardy, P. Strebel, K. M. Bisgard, C. Vitek, T. Popovic, and M. Wharton, Epidemic Diphtheria in the Newly Independent States of the Former Soviet Union: Implications for Diphtheria Control in the United States, J. Infect. Dis. 181(Suppl 1), S237{43, (2000).
[15] M. R. Rahman, K. Islam, Massive diphtheria outbreak among Rohingya refugees: lessons learnt, J. Travel Med., Volume 26, Issue 1, 2019.
[16] J. A. Polonsky, M. Ivey, M. K. A. Mazhar, Z. Rahman, O. l. P. de Waroux, B. Karo, K. Jalava, S. Vong, A. Baidjoe, J. Diaz, F. Finger, Z. H. Habib, C. E. Halder, C. Haskew, L. Kaiser, A. S. Khan, L. Sangal, T. Shirin, Q. A. Zaki, M. A. Salam, K. White,
Epidemiological, clinical, and public health response characteristics of a large outbreak of diphtheria among the Rohingya population in Cox's Bazar, Bangladesh, 2017 to 2019: A retrospective study, PLos Med, 18(4), e1003587, (2021).
[17] S. Ahmed, W. P. Simmons, R. Chowdhury, S. Huq. The sustainability{peace nexus in crisis contexts: how the Rohingya escaped the ethnic violence in Myanmar, but are trapped into environmental challenges in Bangladesh, Springer, 2021.
[18] T. Waezizadeh, A. Mehrpooya, M. Rezaeizadeh, S. Yarahmadian, Mathematical models for the e ects of hypertension and stress on kidney and their uncertainty, Math. Biosci., Vol. 305, 77-95, (2018).
[19] M. Kamrujjaman, M. S. Mahmud, & M. S. Islam, Coronavirus outbreak and the mathematical growth map of COVID-19. Annual Research & Review in Biology, 72e78, (2020).
[20] M. Kamrujjaman, M. S. Mahmud, S. Ahmed, M. O. Qayum, M. M. Alam, M. N. Hassan, M. R. Islam , K. F. Nipa and U. Bulut. SARS-CoV-2 and Rohingya Refugee Camp, Bangladesh: Uncertainty and How the Government Took Over the Situation, Biology, 10, 124, 1-18, (2021).
[21] M. A. Kuddus, and A. Rahman, Analysis of COVID-19 using a modi ed SLIR model with nonlinear incidence, Results Phys., 27, 104478, (2021).
[22] J. J. Tewa, R. Fokouop, B. Mewoli, and S. Bowong, Mathematical analysis of a general class of ordinary di erential equations coming from within-hosts models of malaria with immune e ectors, Appl. Math. Comput., 218, 7347-7361, (2012).
[23] M. Kamrujjaman, P. Saha, M. S. Islam, and U. Ghosh, Dynamics of SEIR Model: A case study of COVID-19 in Italy, Results in Control and Optimization, 7, 100119, (2022).
[26] H. Nishiura, Correcting the Actual Reproduction Number: A Simple Method to Estimate R0 from Early Epidemic Growth Data, IJERPH, 7(1), 291-302, (2010).
[24] J. D. Murray, Mathematical Biology I: An Introduction, third edition, Springer, 2002.
[25] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, 2015.
[27] M. S. Mahmud, M. kamrujjaman, M. M. I. Y. Adan, M. A. Hossain, M. M. Rahman, M. S. Islam, M. Mohebujjaman, and M. M. Molla, Vaccine ecacy and SARS-CoV-2 control in California and U.S. during the session 2020-2026: A modeling study, Infect. Dis. Model., 7: 62-81, (2021).
[28] TIME. About 60 Rohingya Babies Are Born Every Day in Refugee Camps, the U.N. Says | TIME. 2018. Available online: https://time.com/5280232/myanmar-bangladesh-rohingya-babies-births/ (accessed on 18 September (2020)).
[29] R. L. Burden, R. L. Faires, Numerical Analysis. 9th Edition, Brookscole, Boston, 259-253, 2011.