[1] Adamu, A., Abdullahi, M., Junaidu, S. B., & Hassan, I. H. (2021). An hybrid particle swarm optimization with crow search algorithm for feature selection. Machine Learning with Applications, 6, 100108.
https://doi.org/10.1016/j.mlwa.2021.100108
[2] Abualigah, L., & Dulaimi, A. J. (2021). A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and genetic algorithm. Cluster Computing, 24, 2161-2176.
https://doi.org/10.1007/s10586-021-03254-y
[3] Abdel-Basset, M., Ding, W., & El-Shahat, D. (2021). A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artificial Intelligence Review, 54, 593-637.
https://doi.org/10.1007/s10462-020-09860-3
[4] Abdel-Basset, M., El-Shahat, D., El-Henawy, I., De Albuquerque, V. H. C., & Mirjalili, S. (2020). A new fusion of grey wolf optimizer algorithm with a twophase mutation for feature selection. Expert Systems with Applications, 139, 112824.
https://doi.org/10.1016/j.eswa.2019.112824
[5] Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). Ieee Access, 9, 26766-26791.
https://doi.org/10.1109/ACCESS.2021.3056407
[6] Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021). Chaotic gaining sharing knowledgebased optimization algorithm: an improved metaheuristic algorithm for feature selection. Soft Computing, 25(14), 9505-9528.
https://doi.org/10.1007/s00500-021-05874-3
[7] Al-Wajih, R., Abdulkadir, S. J., Aziz, N., Al-Tashi, Q., & Talpur, N. (2021). Hybrid binary grey wolf with Harris hawks optimizer for feature selection. IEEE Access, 9, 31662-31677.
https://doi.org/10.1109/ACCESS.2021.3060096
[8] Ahmed, S., Ghosh, K. K., Mirjalili, S., & Sarkar, R. (2021). AIEOU: Automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection. Knowledge-Based Systems, 228, 107283.
https://doi.org/10.1016/j.knosys.2021.107283
[9] Bacanin, N., Venkatachalam, K., Bezdan, T., Zivkovic, M., & Abouhawwash, M. (2023). A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset. Microprocessors and Microsystems, 98, 104778.
https://doi.org/10.1016/j.micpro.2023.104778
[12] Chantar, H., Tubishat, M., Essgaer, M., & Mirjalili, S. (2021). Hybrid binary dragonfly algorithm with simulated annealing for feature selection. SN computer science, 2(4), 295. https://doi.org/10.1007/s42979-021-00687-5
[13] Ding, Y., Zhou, K., & Bi, W. (2020). Feature selection based on hybridization of genetic algorithm and competitive swarm optimizer. Soft Computing, 24, 11663-11672.
https://doi.org/10.1007/s00500-019-04628-6
[14] Elgamal, Z. M., Yasin, N. B. M., Tubishat, M., Alswaitti, M., & Mirjalili, S. (2020). An improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical field. IEEE access, 8, 186638-186652.
https://doi.org/10.1109/ACCESS.2020.3029728
[16] Ghosh, K. K., Guha, R., Bera, S. K., Sarkar, R., & Mirjalili, S. (2020). BEO: Binary equilibrium optimizer combined with simulated annealing for feature selection. Research Square.
https://doi.org/10.21203/rs.3.rs-28683/v1
[18] Hussain, K., Neggaz, N., Zhu, W., & Houssein, E. H. (2021). An efficient hybrid sinecosine Harris hawks optimization for low and high-dimensional feature selection. Expert Systems with Applications, 176, 114778.
https://doi.org/10.1016/j.eswa.2021.114778
[19] Igiri, C. P., Singh, Y., & Poonia, R. C. (2020). A review study of modified swarm intelligence: particle swarm optimization, firefly, bat and gray wolf optimizer algorithms. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 13(1), 5-12.
https://doi.org/10.2174/2213275912666190101120202
[20] Ibrahim, R. A., Ewees, A. A., Oliva, D., Abd Elaziz, M., & Lu, S. (2019). Improved salp swarm algorithm based on particle swarm optimization for feature selection. Journal of Ambient Intelligence and Humanized Computing, 10, 3155-3169.
https://doi.org/10.1007/s12652-018-1031-9
[21] Ibrahim, R. A., Abd Elaziz, M., Ewees, A. A., El-Abd, M., & Lu, S. (2021). New feature selection paradigm based on hyper-heuristic technique. Applied Mathematical Modelling, 98, 14-37.
https://doi.org/10.1016/j.apm.2021.04.018
[22] Johnson, J. M., & Rahmat-Samii, Y. (1994, June). Genetic algorithm optimization and its application to antenna design. In Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting (Vol. 1, pp. 326-329). IEEE.
https://doi.org/10.1109/APS.1994.407746
[23] Kennedy, J. (2003, April). Bare bones particle swarms. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706) (pp. 80-87). IEEE.
https://doi.org/10.1109/SIS.2003.1202251
[25] Liu, Y., Zou, X., Ma, S., Avdeev, M., & Shi, S. (2022). Feature selection method reducing correlations among features by embedding domain knowledge. Acta Materialia, 238, 118195.
https://doi.org/10.1016/j.actamat.2022.118195
[26] Moslehi, F., & Haeri, A. (2020). A novel hybrid wrapper–filter approach based on genetic algorithm, particle swarm optimization for feature subset selection. Journal of Ambient Intelligence and Humanized Computing, 11, 1105-1127.
https://doi.org/10.1007/s12652-019-01364-5
[27] Mafarja, M., Qasem, A., Heidari, A. A., Aljarah, I., Faris, H., & Mirjalili, S. (2020). Efficient hybrid nature-inspired binary optimizers for feature selection. Cognitive Computation, 12, 150-175.
https://doi.org/10.1007/s12559-019-09668-6
[28] Nssibi, M., Manita, G., & Korbaa, O. (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49, 100559.
https://doi.org/10.1016/j.cosrev.2023.100559
[29] Piri, J., Mohapatra, P., Singh, H. K. R., Acharya, B., & Patra, T. K. (2022). An Enhanced Binary Multiobjective Hybrid Filter-Wrapper Chimp Optimization Based Feature Selection Method for COVID-19 Patient Health Prediction. IEEE Access, 10,
100376-100396.
https://doi.org/10.1109/ACCESS.2022.3203400
[30] Sharifai, A. G., & Zainol, Z. B. (2021). Multiple filter-based rankers to guide hybrid grasshopper optimization algorithm and simulated annealing for feature selection with high dimensional multi-class imbalanced datasets. IEEE Access, 9, 74127-74142.
https://doi.org/10.1109/ACCESS.2021.3081366
[31] Sayed, G. I., Khoriba, G., & Haggag, M. H. (2022). A novel chaotic equilibrium optimizer algorithm with S-shaped and V-shaped transfer functions for feature selection. Journal of Ambient Intelligence and Humanized Computing, 1-26.
https://doi.org/10.1007/s12652-021-03151-7
[32] Shambour, M. D. K. Y., Abusnaina, A. A., & Alsalibi, A. I. (2019). Modified global flower pollination algorithm and its application for optimization problems. Interdisciplinary Sciences: Computational Life Sciences, 11, 496-507.
https://doi.org/10.1007/s12539-018-0295-2
[33] Tiwari, A., & Chaturvedi, A. (2022). A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification. Expert Systems with Applications, 196, 116621.
https://doi.org/10.1016/j.eswa.2022.116621
[34] Thakkar, A., & Lohiya, R. (2022). A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Artificial Intelligence Review, 55(1), 453-563.
https://doi.org/10.1007/s10462-021-10037-9
[35] Too, J., & Mirjalili, S. (2021). General learning equilibrium optimizer: a new feature selection method for biological data classification. Applied Artificial Intelligence, 35(3), 247-263.
https://doi.org/10.1080/08839514.2020.1861407
[37] Tanveer, M., Rajani, T., Rastogi, R., Shao, Y. H., & Ganaie, M. A. (2022). Comprehensive review on twin support vector machines. Annals of Operations Research, 1-46.
https://doi.org/10.1007/s10479-022-04575-w
[38] Thaher, T., Chantar, H., Too, J., Mafarja, M., Turabieh, H., & Houssein, E. H. (2022). Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems. Expert Systems with Applications, 195, 116550.
https://doi.org/10.1016/j.eswa.2022.116550
[39] Unler, A., Murat, A., & Chinnam, R. B. (2011). mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Information Sciences, 181(20), 4625-4641.
https://doi.org/10.1016/j.ins.2010.05.037
[41] Wang, L., Jiang, S., & Jiang, S. (2021). A feature selection method via analysis of relevance, redundancy, and interaction. Expert Systems with Applications, 183, 115365.
https://doi.org/10.1016/j.eswa.2021.115365
[42] Zivkovic, M., Stoean, C., Chhabra, A., Budimirovic, N., Petrovic, A., & Bacanin, N. (2022). Novel improved salp swarm algorithm: An application for feature selection. Sensors, 22(5), 1711.
https://doi.org/10.3390/s22051711