[1] Allen, E.J., Novose, S.J., & Zhang, Z.C. (1998). Finite element and di erence approximation of some linear stochastic partial di erential equations, Stochastic Rep. vol 64, 117{142.
https://doi.org/10.1080/17442509808834159
[2] Baleanu, D., Namjoo, M., Mohebbian, A., & Jajarmi, A. (2022) A Weighted average nite di erence scheme for the numerical solution of stochastic parabolic partial di erential equations, CMES - Comput. Model. Eng. Sci. 135(2), 1147{1163.
https://doi.org/10.32604/cmes.2022.022403
[3] Bishehniasar, M., & Soheili, A. R. (2013) Approximation of stochastic advection diffusion equation using compact nite di erence technique, Iran J. Sci. Technol. 37A3, 327{333.
https://doi.org/10.22099/ijsts.2013.1631
[4] Iqbal, S., Martnez, F., Kaabar, M. K. A, & Samei, M. E. (2022) A novel Elzaki transform homotopy perturbation method for solving time-fractional non-linear partial differential equations, Bound. Value Probl. 2022(1), 91.
https://doi.org/10.1186/s13661-022-01673-3
[6] Kaur, N., & Goyal, K. (2022) An adaptive wavelet optimized nite di erence B-spline polynomial chaos method for random partial di erential equations, Appl. Math. Comput. 415, 126738.
https://doi.org/10.1016/j.amc.2021.126738
[8] Mirzaee, F., & Samadyar, N. (2020) Combination of nite di erence method and meshless method based on radial basis functions to solve fractional stochastic advection{ di usion equations, Eng. Comput. 36, 1673{1686.
https://doi.org/10.1007/s00366-019-00789-y
[9] Namjoo, M., & Mohebbian, A. (2016) Approximation of stochastic advection diffusion equations with nite di erence scheme, J. Math. Model. 4(1), 1{18. https://jmm.guilan.ac.ir/article 1571.html
[12] Soheili, A. R., & Arezoomandan, M. (2013) Approximation of stochastic advection di u-sion equations with stochastic alternative direction explicit methods, Appl. Math. 58(4),439{471.
https://doi.org/10.1007/s10492-013-0022-6
[14] Yasin, M. W., Iqbal, M. S., Ahmed, N., Akgul, A., Raza, A., Ra q, M., & Riaz, M. B. (2022) Numerical scheme and stability analysis of stochastic Fitzhugh-Nagumo model, Results Phys. 32, 105023.
https://doi.org/10.1016/j.rinp.2021.105023
[16] Youssri, Y. H.,& Muttardi, M. M. (2023) A mingled tau- nite di erence method for stochastic rst-order partial di erential equations, Int. J. Appl. Comput. 9, 1{14.
https://doi.org/10.1007/s40819-023-01489-4