[1] Akyol, K. (2017). Assessing the importance of attributes for diagnosis of diabetes disease. International Journal of Information Engineering and Electronic Business, 9(5), 1-9.
[2] Bashir, S., Qamar, U., & Khan, F. H. (2016). IntelliHealth: a medical decision support application using a novel weighted multi-layer classi er ensemble framework. Journal of Biomedical Informatics, 59, 185-200.
https://doi.org/10.1016/j.jbi.2015.12.001.
[3] Bellazzi, R., & Zupan, B. (2008). Predictive data mining in clinical medicine: current issues and guidelines. International Journal of medical informatics, 77(2), 81-97.
[4] BERGER, A. M., & BERGER, C. R. (2004). Data mining as a tool for research and knowledge development in nursing. CIN: Computers, Informatics, Nursing, vol. 22, no. 3, pp. 123-131.
[7] Caliskan, A., Yuksel, M. E., Badem, H., & Basturk, A. (2018). Performance improvement of deep neural network classi ers by a simple training strategy. Engineering Applications of Arti cial Intelligence, 67, 14-23.
https://doi.org/10.1016/j.engappai.2017.09.002.
[8] Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., Shapiro, G.P., & Wang, W. (2006). Data mining curriculum: A proposal (Version 1.0). Intensive Working Group of ACM SIGKDD Curriculum Committee, 140, 1-10.
[9] Chang, V., Bailey, J., Xu, Q.A., & Sun, Z. Pima Indians diabetes mellitus classi cation based on machine learning (ML) algorithms. Neural Computing and Applications.
https://doi.org/10.1007/s00521-022-07049-z.
[10] Chapelle, O., Ha ner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classi cation. IEEE transactions on Neural Networks, 10(5), 1055-1064.
https://doi.org/10.1109/72.788646.
[11] Chikh, M.A., Saidi, M., & Settouti, N.(2012). Diagnosis of diabetes diseases using an Arti cial Immune Recognition System2 (AIRS2) with fuzzy K-nearest neighbor. Journal of Medical Systems, 36(5), 2721-2729.
https://doi.org/10.1007/s10916-011-9748-4.
[12] Cho, S., May, G., Tourkogiorgis, I., Perez, R., Lazaro, O., de La Maza, B., & Kiritsis, D. (2018). A hybrid machine learning approach for predictive maintenance in smart factories of the future. proceedings of the IFIP International Conference on Advances in Production Management Systems, Springer, 311-317. https://doi.org/10.1007/978-3-319-99707-0 39.
https://doi.org/10.1016/j.ijmedinf.2006.11.006.
[13] Choubey, D. K., & Paul, S. (2016). GAMLP NN: A hybrid intelligent system for diabetes disease diagnosis. International Journal of Intelligent Systems and Applications, 8(1), 49.
[14] Choubey, D. K., & Paul, S. (2015). GAJ 48graft DT: A hybrid intelligent system for diabetes disease diagnosis. International Journal of Bio-Science and Bio-Technology, 7(5), 135-150.
[16] Devi, R.D.H., Bai, A., & Nagarajan, N. (2020). A novel hybrid approach for diagnosing diabetes mellitus using farthest rst and support vector machine algorithms. Obesity Medicine, 17, 100152.
https://doi.org/10.1016/j.obmed.2019.100152.
[18] Elavarasan, D., Vincent, D. R., Sharma, V., Zomaya, A. Y., & Srinivasan, K. (2018). Forecasting yield by integrating agrarian factors and machine learning models: A survey, Computers and Electronics in Agriculture, 155, 257-282.
https://doi.org/10.1016/j.compag.2018.10.024.
[19] Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (1997). A comparative analysis of methods for pruning decision trees. IEEE transactions on pattern analysis and machine intelligence, 19(5), 476-491.
https://doi.org/10.1109/34.589207.
[21] Federation, I. D. (2019).IDF Diabetes Atlas 2019. ed: International Diabetes Federation.
[22] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[23] Guo, G. ,Wang, H. , Bell, D., Bi, Y., & Greer, K. ( 2003). KNN modelbased approach in classi cation. proceedings of the OTM Confederated International Conferences On the Move to Meaningful Internet Systems, Springer, 986-996. https : ==doi:org=10:1007=978 3 540 39964 3 62:
[24] Hartigan, J.A., & Wong, M. A. (1979). Algorithm AS 136: a k-means clustering algorithm, J. R. Stat. Soc. Ser. C Appl. Stat. 28 (1), 100{108.
[25] https://diabetesatlas.org/en/sections/demographic-and-geographic-outline.html (Accessed 4 May 2019).
[26] https://idf.org/ (Accessed 8 August 2020).
[27] https://archive.ics.uci.edu/ml/index.php (Accessed 13 August 2020).
[28] Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classi er and Naive Bayes. The Journal of Supercomputing, 77(5), 5198-5219.
https://doi.org/10.1007/s11227-020-03481-x.
[29] Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features, in European conference on machine learning, Springer, 137-142.
https://doi.org/10.1007/BFb0026683.
[30] Kannadasan, K., Edla, D. R., & Kuppili, V. (2019). Type 2 diabetes data classi cation using stacked autoencoders in deep neural networks. Clinical Epidemiology and Global Health, 7(4), 530-535.
[32] Mitchell, M. (1996). Chapter 3: Genetic Algorithms in Scienti c Models, An Introduction to Genetic Algorithms. The MIT Press, Cambridge, MA, 85-108.
[34] Petricoin, E.F., Ardakani, A.M., Hitt, B.A., Levine, P.L., Fusarob, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishmen, D.A., Kohn, E.C., & liotta, L.A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. The lancet, 359(9306), 572-577.
https://doi.org/10.1016/S0140-6736(02)07746-2.
[36] Rahim, M.A., Hossain, M.A., Hossain, M.N., Shin, J., & Yun, K.S. (2023). Ensemble-Based Type-2 Diabetes Prediction Using Machine Learning Techniques. Annals of Emerging Technologies in Computing, 7(1), 30{39.
[37] Richards, G., Rayward-Smith, V. J, Sonksen, P. , Carey, S., & Weng, C. (2001). Data mining for indicators of early mortality in a database of clinical records. Arti cial Intelligence in Medicine, 22(3), 215-231.
https://doi.org/10.1016/S0933-3657(00)00110-X.
[39] Singh, N., & Singh, P. (2020). Stacking-based multi-objective evolutionary ensemble framework for prediction of diabetes mellitus, Biocybernetics and Biomedical Engineering, 40(1), 1-22.
https://doi.org/10.1016/j.bbe.2019.10.001.
[40] Song, M. (2008). Biomedical ontologies and text mining for biomedicine and healthcare: A survey. Journal of Computing Science Engineering, 2(2), 109-136.
[41] Steinley, D., & Brusco, M. J. (2007). Initializing k-means batch clustering: A critical evaluation of several techniques. Journal of Classi cation, 24(1), 99-121.
https://doi.org/10.1007/s00357-007-0003-0.
[42] Vadeyar, D.A., & Yogish, H. (2014). Farthest rst clustering in links reorganization. International Journal of Web and Semantic Technology, 5(3), 17.
[43] Velickov, S., & Solomatine, D. (2000). Predictive data mining: practical examples. proceedings of the 2nd Joint Workshop on Applied AI in Civil Engineering.
[44] Velu, C., & Kashwan, K. (2013). Visual data mining techniques for classi cation of diabetic patients. proceedings of the 3rd IEEE International Advance Computing Conference (IACC), IEEE, 1070-1075.
https://doi.org/10.1109/IAdCC.2013.6514375.
[45] Wu, L., Peng, Y., Fan, J., Wang, Y., & Huang, G. (2021). A novel kernel extreme learning machine model coupled with K-means clustering and rey algorithm for estimating monthly reference evapotranspiration in parallel computation. Agricultural Water Management, 245, 106624.
https://doi.org/10.1016/j.agwat.2020.106624.
[46] Wu, H., Yang, S., Huang, Z., He, J., & Wang, X. (2018). Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked, 10, 100-107.
https://doi.org/10.1016/j.imu.2017.12.006.
[47] Yoo, I., Alafaireet, P., Marinov, M., Hernandez, K. P., Gopidi, R., Chang, J., & Hua, L. (2012). Data mining in healthcare and biomedicine: a survey of the literature, Journal of medical systems, 36(4), 2431-2448.
https://doi.org/10.1007/s10916-011-9710-5.
[48] Zhan, M., Chen, Z. B., Ding, C. C., Qu, Q., Wang, G. Q., Liu, S., & Wen, F. Q. (2021). Machine learning to predict high-dose methotrexate-related neutropenia and fever in children with B-cell acute lymphoblastic leukemia. Leukemia and Lymphoma, 1-12.
https://doi.org/10.1080/10428194.2021.1913140.