1] Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484-500.
https://doi.org/10.1016/j.eswa.2017.07.043
[2] Abdullahi, M., & Ngadi, M. A. (2016). Symbiotic organism search optimization based task scheduling in cloud computing environment. Future Generation Computer Systems, 56, 640-650.
https://doi.org/10.1016/j.future.2015.08.006
[3] Belegundu, A. D., & Arora, J. S. (1985). A study of mathematical programming methods for structural optimization. Part I: Theory. International Journal for Numerical Methods in Engineering, 21(9), 1583-1599.
https://doi.org/10.1002/nme.1620210904
[4] Bezdan, T., Stoean, C., Naamany, A. A., Bacanin, N., Rashid, T. A., Zivkovic, M., & Venkatachalam, K. (2021). Hybrid fruit-fly optimization algorithm with k-means for text document clustering. Mathematics, 9(16), 1929.
https://doi.org/10.3390/math9161929
[5] Bouchekara, H. R. E. H., Zellagui, M., & Abido, M. A. (2017). Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm. Applied Soft Computing, 54, 267-283.
https://doi.org/10.1016/j.asoc.2017.01.037
[6] Chen, P. W., Lin, W. Y., Huang, T. H., & Pan, W. T. (2013). Using fruit fly optimization algorithm optimized grey model neural network to perform satisfaction analysis for e-business service. Applied Mathematics & Information Sciences, 7(2L), 459-465.
http://dx.doi.org/10.12785/amis/072L12
[7] Darvish, A., & Ebrahimzadeh, A. (2018). Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis. IEEE transactions on antennas and propagation, 66(4), 1756-1766.
https://doi.org/10.1109/TAP.2018.2800695
[8] Ding, G., Dong, F., & Zou, H. (2019). Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding. Applied Soft Computing, 84, 105704.
https://doi.org/10.1016/j.asoc.2019.105704
[10] Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
https://doi.org/10.1016/j.compstruc.2012.07.010
[11] Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with computers, 29, 17-35.
https://doi.org/10.1007/s00366-011-0241-y
[16] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.
https://doi.org/10.1109/ICNN.1995.488968
[17] Li, H. Z., Guo, S., Li, C. J., & Sun, J. Q. (2013). A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based Systems, 37, 378-387.
https://doi.org/10.1016/j.knosys.2012.08.015
[22] Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a natureinspired algorithm for global optimization. Neural Computing and Applications, 27, 495-513.
http://dx.doi.org/10.1007/s00521-015-1870-7
[24] Noroozi, M., Mohammadi, H., Efatinasab, E., Lashgari, A., Eslami, M., & Khan, B. (2022). Golden search optimization algorithm. IEEE Access, 10, 37515-37532.
https://doi.org/10.1007/s10462-017-9605-z
[25] Pan, Q. K., Sang, H. Y., Duan, J. H., & Gao, L. (2014). An improved fruit fly optimization algorithm for continuous function optimization problems. Knowledge-Based Systems, 62, 69-83.
https://doi.org/10.1016/j.knosys.2014.02.021
[27] Sayed, G. I., Darwish, A., & Hassanien, A. E. (2018). A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. Journal of Experimental & Theoretical Artificial Intelligence, 30(2), 293-317.
https://doi.org/10.1080/0952813X.2018.1430858
[28] Swami, V., Kumar, S., & Jain, S. (2018). An improved spider monkey optimization algorithm. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2016, Volume 1 (pp. 73-81). Springer Singapore.
https://doi.org/10.1007/978-981-10-5687-17
[29] Torabi, S., & Safi-Esfahani, F. (2018). A dynamic task scheduling framework based on chicken swarm and improved raven roosting optimization methods in cloud computing. The Journal of Supercomputing, 74(6), 2581-2626.
https://doi.org/10.1007/s11227-018-2291-z
[30] Valdez, F., Melin, P., & Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Applied Soft Computing, 11(2), 2625-2632.
https://doi.org/10.1016/j.asoc.2010.10.010
[31] Wang, L., Zheng, X. L., & Wang, S. Y. (2013). A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem. Knowledge-Based Systems, 48, 17-23.
https://doi.org/10.1016/j.knosys.2013.04.003
[32] Wu, L., Liu, Q., Tian, X., Zhang, J., & Xiao, W. (2018). A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowledge-Based Systems, 144, 153-173.
https://doi.org/10.1016/j.knosys.2017.12.031
[33] Yazdani, M., & Jolai, F. (2016). Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. Journal of computational design and engineering, 3(1), 24-36.
https://doi.org/10.1016/j.jcde.2015.06.003
[34] Zhang, X., Xu, Y., Yu, C., Heidari, A. A., Li, S., Chen, H., & Li, C. (2020). Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Systems with Applications, 141, 112976.
https://doi.org/10.1016/j.eswa.2019.112976
[35] Zhao, F., Qin, S., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2019). A two-stage differential biogeography-based optimization algorithm and its performance analysis. Expert Systems with Applications, 115, 329-345.
https://doi.org/10.1016/j.eswa.2018.08.012