Application of Sigmoid function in the space of univalent functions based on subordination

Document Type : Research Paper

Authors

Department of Mathematics, Payame Noor University, Post Office Box: 19395--3697, Tehran, Iran

Abstract

In the present paper, we introduce a new subclass of normalized analytic and univalent functions in the open unit disk associated with Sigmoid function. Coefficient estimates, convolution conditions, convexity and some other geometric properties for functions in this class are investigated. Also, subordination and inclusion results are obtained.

Keywords

Main Subjects


[1] Arif, M., Marwa, S., Xin, Q., Tchier, F., Ayaz, M. and Malik, SN (2022). Sharp Coecient Problems of Functions with Bounded Turnings Subordinated by Sigmoid Function. Mathematics, 10(20), 3862. https://doi.org/10.3390/math10203862
[2] Caglar, M., and Orhan, H. (2019). (; ; )-neighborhood for analytic functions involving modi ed sigmoid function.  Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2), 2161{2169. https://doi.org/10.31801/cfsuasmas.515557
[3] Duren., PL (1983). Univalent functions, Grundlehren der mathematischen. Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.
[4] Fadipe-Joseph, OA, Oluwayemi, MO, and Titiloye, EO (2021). Subclasses of Univalent Functions Involving Modi ed Sigmoid Function. Int. J. Di er. Equ., 16(1), 81{93. https://dx.doi.org/10.37622/IJDE/16.1.2021.81-93
[5] Hamzat, JO, Oladipo, AT, and Oros, GI (2022). Bi-univalent problems involving certain new subclasses of generalized multiplier transform on analytic functions associated with modi ed sigmoid function. Symmetry, 14(7), 1479. https://doi.org/10.3390/sym14071479
[6] Kamali, M.,Orhan, H., and CAGLAR M. (2020). The Fekete-Szego inequality for subclasses of analytic functions related to modi ed Sigmoid functions. Turk. J. Math., 44(3), 1016{1026. https://doi.org/10.3906/mat-1910-85
[7] Miller, SS, and Mocanu, PT (2000). Di erential subordinations: theory and applications. CRC Press.
[8] Murugusundaramoorthy, G., and Janani, T. (2015). Sigmoid function in the space of univalent -pseudo starlike functions. Int. J. Pure Appl. Math., 101(1), 33{41. https://doi.org/10.12732/ijpam.v101i1.4
[9] Najafzadeh, Sh, and Kulkarni, SR (2006). Note on Application of Fractional calculus and subordination to p-valent functions. Mathematica (cluj), 48(71), No 2, 167{172.
[10] Olatunji, S., Gbolagade, A., Anake, T., and Fadipe-Joseph O. (2013). Sigmoid function in the space of univalent function of Bazilevic type. Scientia Magna, 9(3), 43-51.
[11] Orhan, H., Murugusundaramoorthy, G., and Caglar, M. (2022). The Fekete-Szego problem for subclass of bi-univalent functions associated with sigmoid function. Facta Univ., Math. Inform., 495{506. https://doi.org/10.22190/FUMI201022034O
[12] Priyanka, G., and Sivaprasad Kumar, S. (2020). Certain class of starlike functions associated with modi ed sigmoid function. Bull. Malaysian Math. Sci. Soc., 43(1), 957{991. https://doi.org/10.1007/s40840-019-00784-y
[13] Sakar, FM, and Aydogan, SM (2023). Inequalities of bi-starlike functions involving Sigmoid function and Bernoulli Lemniscate by subordination. Int. J. Open Problems Compt. Math., 16(1), 71{82.
[14] Wang, X., and Wang, Z. (2018). Coecient inequality for a new subclass of analytic and univalent functions related to sigmoid function. Int. J. Mod. Math. Sci., 16(1), 51{57.