[1] Arif, M., Marwa, S., Xin, Q., Tchier, F., Ayaz, M. and Malik, SN (2022). Sharp Coecient Problems of Functions with Bounded Turnings Subordinated by Sigmoid Function. Mathematics, 10(20), 3862.
https://doi.org/10.3390/math10203862
[2] Caglar, M., and Orhan, H. (2019). (; ; )-neighborhood for analytic functions involving modi ed sigmoid function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2), 2161{2169.
https://doi.org/10.31801/cfsuasmas.515557
[3] Duren., PL (1983). Univalent functions, Grundlehren der mathematischen. Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.
[5] Hamzat, JO, Oladipo, AT, and Oros, GI (2022). Bi-univalent problems involving certain new subclasses of generalized multiplier transform on analytic functions associated with modi ed sigmoid function. Symmetry, 14(7), 1479.
https://doi.org/10.3390/sym14071479
[6] Kamali, M.,Orhan, H., and CAGLAR M. (2020). The Fekete-Szego inequality for subclasses of analytic functions related to modi ed Sigmoid functions. Turk. J. Math., 44(3), 1016{1026.
https://doi.org/10.3906/mat-1910-85
[7] Miller, SS, and Mocanu, PT (2000). Di erential subordinations: theory and applications. CRC Press.
[8] Murugusundaramoorthy, G., and Janani, T. (2015). Sigmoid function in the space of univalent -pseudo starlike functions. Int. J. Pure Appl. Math., 101(1), 33{41.
https://doi.org/10.12732/ijpam.v101i1.4
[9] Najafzadeh, Sh, and Kulkarni, SR (2006). Note on Application of Fractional calculus and subordination to p-valent functions. Mathematica (cluj), 48(71), No 2, 167{172.
[10] Olatunji, S., Gbolagade, A., Anake, T., and Fadipe-Joseph O. (2013). Sigmoid function in the space of univalent function of Bazilevic type. Scientia Magna, 9(3), 43-51.
[11] Orhan, H., Murugusundaramoorthy, G., and Caglar, M. (2022). The Fekete-Szego problem for subclass of bi-univalent functions associated with sigmoid function. Facta Univ., Math. Inform., 495{506.
https://doi.org/10.22190/FUMI201022034O
[12] Priyanka, G., and Sivaprasad Kumar, S. (2020). Certain class of starlike functions associated with modi ed sigmoid function. Bull. Malaysian Math. Sci. Soc., 43(1), 957{991.
https://doi.org/10.1007/s40840-019-00784-y
[13] Sakar, FM, and Aydogan, SM (2023). Inequalities of bi-starlike functions involving Sigmoid function and Bernoulli Lemniscate by subordination. Int. J. Open Problems Compt. Math., 16(1), 71{82.
[14] Wang, X., and Wang, Z. (2018). Coecient inequality for a new subclass of analytic and univalent functions related to sigmoid function. Int. J. Mod. Math. Sci., 16(1), 51{57.