[1] Alizadeh, H.N. (2017), Gini index-based goodness-of- t test for the logistic distribution, Communications in Statistics-Theory and Methods, 46, 7114-7124.
[2] Alizadeh, H.N. and Shafaei, M.N. (2024a), Monte Carlo comparison of goodness-of-t tests for the Inverse Gaussian distribution based on empirical distribution function, Journal of Mahani Mathematical Research, 13, 71-84.
[3] Alizadeh, H.N. and Shafaei, M.N. (2024b), Varentropy estimators applied to test of t for Inverse Gaussian distribution, Journal of Mahani Mathematical Research, In Press.
[4] Alizadeh, H.N., Arghami, N.R. and Mohtashami Borzadaran, G.R. (2014), A test of goodness of t based on Gini index, ISTATISTIK: Journal of the Turkish Statistical Association, 7, 23-33.
[5] Bardsley, W.E. (1980), Note on the use of the inverse Gaussian distribution for wind energy applications, Journal of Applied Meteorology, 19, 1126{1130.
[6] Barndor -Nielsen, O.E. (1994), A note on electrical networks and the inverse Gaussian distribution, Advances in Applied Probability, 26, 63{67.
[7] Chen, Z. (2000), A new two-parameter lifetime distribution with bathtub shape or increasing failure note function, Statistics and Probability Letters, 49, 155{161.
[8] Chhikara, R.S. and Folks, J.L. (1977), The inverse Gaussian distribution as a lifetime model, Technometrics, 19, 461{468.
[9] Chhikara, Raj S. and Folks, J. Leroy (1989), The Inverse Gaussian Distribution: Theory, Methodology and Applications, New York, NY, USA: Marcel Dekker, Inc, ISBN 0-8247-7997-5.
[10] D'Agostino, R.B. and Stephens, M.A. (Eds.) (1986), Goodness-of- t Techniques, New York: Marcel Dekker.
[11] Dhillon, B.S. (1981), Lifetime Distributions, IEEE Transactions on Reliability, 30 457{459.
[12] Ebner, B. Liebenberg, S.C. and Visagie, I.J.H. (2022), A new omnibus test of t based on a characterization of the uniform distribution, Statistics, 56, 1364-1384.
[13] Folks, J.L. and Chhikara, R.S. (1978), The inverse Gaussian distribution and its statistical application-a review, Journal of the Royal Statistical Society, Series B, 40, 263{289.
[14] Folks, J.L. and Chhikara, R.S. (1989), In: The Inverse Gaussian Distribution, Theory, Methodology and Applications. Marcel Dekker, New York.
[15] Gail, M.H. and Gastwirth, J.L. (1978), A scale-free goodness-of- t test for the exponential distribution based on the Gini statistic, Journal of the Royal Statistical Society, series B, 40, 350-357.
[16] Giles, E.A.D. (2004), Calculating a standard error for the Gini coecient: some further results, Oxford Bulletin of Economics & Statistics 66, 425{428.
[17] Gunes, H., Dietz, D.C., Auclair, P.F., Moore, A.H. (1997), Modi ed goodness-of- t tests for the inverse Gaussian distribution, Computational Statistics and Data Analysis,24, 63{77.
[18] Jammalamadaka, S.R. and Goria, M.N. (2004), A test of goodness-of- t based on Gini's index of spacings ngs, Statistics & Probability Letters, 68, 177{187.
[19] Martinez{Camblor, P. and Corral, N. (2009), About the exact and asymptotic distribution of the Gini coecient, Revista de Matematica: Teora y Aplicaciones, 16, 199{204.
[20] Pakyari, R. (2023), Goodness-of- t testing based on Gini Index of spacings for progressively Type-II censored data, Communications in Statistics - Simulation and Computation, 52, 3223-3232.
[21] Qin, X., Yu, J. and Gui, W. (2022), Goodness-of- t test for exponentiality based on spacings for general progressive Type-II censored data, Journal of Applied Statistics, 49, 599-620.
[22] Schrodinger, E. (1915), Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung, Physikalische Zeitschrift, 16, 289{295.
[23] Seshadri, V. (1993), The Inverse Gaussian Distribution: A Case Study in Exponential Families. Clarendon Press, Oxford.
[24] Seshadri, V. (1999), In: The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York.
[25] Tweedie, M.C.K. (1957), Statistical properties of Inverse Gaussian Distributions, I. Annals of Mathematical Statistics, 28, 362{377.
[26] Zhang, J. (2002), Powerful goodness-of- t tests based on the likelihood ratio, Journal of Royal Statistical Society, Series B, 64, 281-294.