A criterion for $p$-solvability of finite groups, where $p=7$ or $11$

Document Type : Research Paper

Author

Department of Mathematics, Payamenoor University, Tehran, Iran

Abstract

For a finite group $G$, define $ \psi^{\prime \prime}(G)=\psi(G)/|G|^2 $, where $\psi(G)=\sum_{g\in G}o(g)$ and $o(g)$ denotes the order of $g \in G $.  In this paper, we give a criterion for $p$-solvability by the function  $\psi''$, where $ p \in \{7,  11\} $. We prove that if $ G $ is a  finite group and $\psi''(G)>\psi''({\rm PSL}(2, p))$, where $p \in \{7, 11\}$, then $G$ is a $p$-solvable group.

Keywords

Main Subjects


[1] Amiri, H., Jafarian Amiri, S.M., & Isaacs I.M. (2009). Sums of element orders in  finite groups. Comm. Algebra 37(9), 2978{2980. https://doi.org/10.1080/00927870802502530
[2] Baniasad Azad, M. (2023). The simple B -groups. arXiv preprint arXiv:2309.03881
[3] Baniasad Azad M., & Khosravi B. (2018). A criterion for solvability of a  finite group by the sum of element orders. J. Algebra 516, 115{124. https://doi.org/10.1016/j.jalgebra.2018.09.009
[4] Baniasad Azad, M., & Khosravi, B. (2020). A criterion for p-nilpotency and p-closedness by the sum of element orders. Comm. Algebra 48(12) 5391{5395. https://doi.org/10.1080/00927872.2020.1788571
[5] Baniasad Azad, M., Khosravi, B., & Rashidi, H. (2022). On the sum of the inverses of the element orders in  finite groups. Comm. Algebra 51(2), 694{698. https://doi.org/10.1080/00927872.2022.2109043
[6] Baniasad Azad, M., & Khosravi, B. (2021) Properties of  nite groups determined by the product of their element orders. Bull. Aust. Math. Soc., 103(1), 88{95. https://doi.org/10.1080/00927872.2020.1788571
[7] Baniasad Azad, M., & Khosravi, B. (2022) On two conjectures about the sum of element orders. Can. Math. Bull. 65(1), 30{38. https://doi.org/10.4153/S0008439521000047
[8] Baniasad Azad, M., Khosravi, B., & Jafarpour, M. (2022) An answer to a conjecture on the sum of element orders. J. Algebra Appl. 21(4), 2250067. https://doi.org/10.1142/S0219498822500670
[9] Chakrabarty, I., Ghosh, S., & Sen, M. K. (2009) Undirected power graphs of semigroups. Semigroup Forum. 78(3), 410|426. DOI:10.1007/s00233-008-9132-y
[10] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A.,& Wilson, R. A. (1985). Atlas of Finite Groups, Oxford Univ. Press, Oxford. https://doi.org/10.1017/S001309150002839X
[11] Herzog, M., Longobardi, P., & Maj, M. (2018). An exact upper bound for sums of element orders in non-cyclic  finite groups. J. Pure Appl. Algebra 222(7) 1628{1642. https://doi.org/10.1016/j.jpaa.2017.07.015
[12] Herzog, M., Longobardi, P., & Maj, M. (2018). Two new criteria for solvability of  finite groups. J. Algebra 511, 215{226. https://doi.org/10.1016/j.jalgebra.2018.06.015
[13] Lucchini, A. (1998). On the order of transitive permutation groups with cyclic point-stabilizer. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 9(4), 241{243.
[14] Tarnauceanu, M. (2020). Detecting structural properties of  nite groups by the sum of element orders. Israel J. Math. 238(2), 629{637. DOI:10.1007/s11856-020-2033-9
[15] Tarnauceanu, M. (2020). A criterion for nilpotency of a  finite group by the sum of element orders. Commun. Algebra 49(4) 1571{1577. https://doi.org/10.48550/arXiv.1903.09744
[16] Xu, H., Chen, G., & Yan, Y. (2014). A new characterization of simple K3-groups by their orders and large degrees of their irreducible characters. Comm. Algebra 42(12), 5374{5380. DOI:10.1080/00927872.2013.842242