Effect of blood perfusion on thermal therapy in multilayer skin by semigroups approach

Document Type : Research Paper

Authors

1 Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

A semi-analytical solution is proposed for the bioheat equation, which includes the epidermis, dermis, and hypodermis layers in the presence of a surface pulsed heat source. A switching time surface heating/cooling source, which has therapeutic applications in human tissue burning, is used. The interface temperature is calculated by matching the temperature and heat flux between two adjacent layers. A high-performance computing algorithm is designed and implemented by combining semigroups theory, Laplace transform, and convolution operators in each layer. It is proved that proposed solution is consistent, convergent and stable. The reliability, performance and efficiency of semi-analytical solutions are compared using the bioheat transfer module of COMSOL software based on standard finite element methods. Numerical results for three different medical examples are given. Influences of blood pressure on temperature along the layered skin for different switching and final times are discussed.

Keywords

Main Subjects


[1] Abbasi, GH., & Malek, A. (2019). Hyperthermia cancer therapy by domain decomposition methods using strongly continuous semigroups. Mathematics and Computers in Simulation, 165, 1{12. https://doi.org/10.1016/j.matcom.2019.02.015
[2] Akula, S. C., & Maniyeri, R. (2020). Numerical simulation of bioheat transfer: a comparative study on hyperbolic and parabolic heat conduction. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(62), 1{13. https://doi.org/10.1007/s40430-019-2132-x
[3] Al-Humedi, H. O., & Al-Saadawi, F. A. (2021). The numerical solution of bioheat equation based on shifted Legendre polynomial. International Journal of Nonlinear Analysis and Applications, 12(2), 1061{1070. https://doi.org/10.22075/ijnaa.2021.5175
[4] Askarizadeh, H., & Ahmadikia, H. (2015). Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Applied Mathematical Modelling, 39(13), 3704{3720. https://doi.org/10.1016/j.apm.2014.12.003
[5] Boyce, W. E., DiPrima, R. C., & Meade, D. B. (1992). Elementary di erential equations and boundary value problems (Vol. 9). New York: Wiley.
[6] COMSOL Modeling Software. (2023). COMSOL Multiphysics version: 6.2. Burlington, MA, United States: COMSOL Inc. https://www.comsol.com
[7] Curtain, R. F., & Zwart, H. (1995). An introduction to in nite-dimensional linear systems theory (Vol. 21). New York: Springer-Verlag.
[8] Durbin, F. (1974). Numerical inversion of Laplace transforms: an ecient improvement to Dubner and Abate's method. The Computer Journal, 17(4), 371{376. https://doi.org/10.1093/comjnl/17.4.371
[9] Finite Element Method. (2017). COMSOL Multiphysics Cyclopedia. https://www.comsol.com/multiphysics/nite-element-method 
[10] Hobiny, A. D., & Abbas, I. A. (2018). Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. International Journal of Heat and Mass Transfer, 124, 1011{1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018
[11] Hooshmand, P., Moradi, A., & Khezry, B. (2015). Bioheat transfer analysis of biological tissues induced by laser irradiation. International Journal of Thermal Sciences, 90, 214{223. https://doi.org/10.1016/j.ijthermalsci.2014.12.004
[12] Kalateh Bojdi, Z., & Askari Hemmat, A. (2017). Wavelet collocation methods for solving the Pennes bioheat transfer equation. Optik, 130, 345{355. https://doi.org/10.1016/j.ijleo.2016.10.102
[13] Kashcooli, M., Salimpour, M. R., & Shirani, E. (2017). Heat transfer analysis of skin during thermal therapy using thermal wave equation. Journal of Thermal Biology, 64, 7{18. https://doi.org/10.1016/j.jtherbio.2016.12.007
[14] Kazemi Alamouti, A., Habibi, M. R., Mazidi Sharfabadi, M., & Akbari Lalimi, H. (2021). Numerical study on the e ects of blood perfusion and tumor metabolism on tumor temperature for targeted hyperthermia considering a realistic geometrical model of head layers using the  nite element method. SN Applied Sciences, 3(462), 1{17. https://doi.org/10.1007/s42452-021-04447-1
[15] Li, E., Liu, G. R., Tan, V., & He, Z. C. (2010). Modeling and simulation of bioheat transfer in the human eye using the 3D alpha  nite element method ( FEM). International Journal for Numerical Methods in Biomedical Engineering, 26(8), 955{976. https://doi.org/10.1002/cnm.1372
[16] Li, X., Li, C., Xue, Z., & Tian, X. (2018). Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties. International Journal of Thermal Sciences, 124, 459{466. https://doi.org/10.1016/j.ijthermalsci.2017.11.002
[17] Lin, S. M., & Li, C. Y. (2017). Semi-analytical solution of bio-heat conduction for multi-layers skin subjected to laser heating and uid cooling. Journal of Mechanics in Medicine and Biology, 17(2), 1750029{25. https://doi.org/10.1142/s0219519417500294
[18] Liu, K. C., & Chen, H. T. (2015). Analysis of the bioheat transfer problem with pulse boundary heat 
ux using a generalized dual-phase-lag model. International Communications in Heat and Mass Transfer, 65, 31{36. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.004
[19] Liu, K. C., & Chen, T. M. (2018). Analysis of the thermal response and requirement for power dissipation in magnetic hyperthermia with the e ect of blood temperature. International Journal of Heat and Mass Transfer, 126, 1048{1056. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.024
[20] Liu, K. C., & Chen, Y. S. (2016). Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. International Journal of Thermal Sciences, 103, 1{9. https://doi.org/10.1016/j.ijthermalsci.2015.12.005
[21] Liu, K. C., Wang, Y. N., & Chen, Y. S. (2012). Investigation on the bio-heat transfer with the dual-phase-lag e ect. International Journal of Thermal Sciences, 58, 29{35. https://doi.org/10.1016/j.ijthermalsci.2012.02.026
[22] Ma, J., Yang, X., Sun, Y., Yang, J., & Yu, J. (2019). Theoretical analysis of nanoshell-assisted thermal treatment for subcutaneous tumor. Journal of The Mechanical Beha-vior of Biomedical Materials, 93, 70{80. https://doi.org/10.1016/j.jmbbm.2019.01.016
[23] Ma, W., Liu, W., & Li, M. (2016). Analytical heat transfer model for targeted brain hypothermia. International Journal of Thermal Sciences, 100, 66{74. https://doi.org/10.1016/j.ijthermalsci.2015.09.014
[24] Malek, A. & Abbasi, GH. (2014). Optimal control solution for Pennes'equation using strongly continuous semigroup. Kybernetika, 50(4), 530{543. https://doi.org/10.14736/kyb-2014-4-0530
[25] Malek, A., & Abbasi, G. (2015). Heat treatment modelling using strongly continuous semigroups. Computers in Biology and Medicine, 62, 65{75. https://doi.org/10.1016/j.compbiomed.2015.03.030
[26] Malek, A., & Abbasi, GH. (2016). Optimal control for Pennes' bioheat equation. Asian Journal Of Control, 18(2), 674{685. https://doi.org/10.1002/asjc.1059
[27] Mital, M., & Tafreshi, H. V. (2012). A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment. International Journal for Numerical Methods in Biomedical Engineering, 28(2), 205{213. https://doi.org/10.1002/cnm.1456
[28] Narasimhan, A., & Jha, K. K. (2012). Bio-heat transfer simulation of retinal laser irradiation. International Journal for Numerical Methods in Biomedical Engineering, 28(5), 547{559. https://doi.org/10.1002/cnm.1489
[29] Pennes, H. H. (1998). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 85(1), 5{34. https://doi.org/10.1152/jappl.1998.85.1.5
[30] Saiko, G. (2022). Skin temperature: the impact of perfusion, epidermis thickness, and skin wetness. Applied Sciences, 12(14), 7106{7120. https://doi.org/10.3390/app12147106
[31] Shirkavand, A., & Nazif, H. R. (2019). Numerical study on the e ects of blood perfusion and body metabolism on the temperature pro le of human forearm in hyperthermia conditions. Journal of Thermal Biology, 84, 339{350. https://doi.org/10.1016/j.jtherbio.2019.07.023
[32] Singh, S., & Kumar, S. (2014). Numerical study on triple layer skin tissue freezing using dual phase lag bio-heat model. International Journal of Thermal Sciences, 86, 12{20. https://doi.org/10.1016/j.ijthermalsci.2014.06.027
[33] Smith, G. D. (1985). Numerical solution of partial di erential equations:  nite di erence methods. United Kingdom: Clarendon Press.
[34] Stade, E. (2011). Fourier analysis (Vol. 109). Germany: Wiley.
[35] Udayraj, Talukdar, P., Das, A. & Alagirusamy, R. (2017). Numerical investigation of the e ect of air gap orientations and heterogeneous air gap in thermal protective clothing on skin burn. International Journal of Thermal Sciences, 121, 313{321. https://doi.org/10.1016/j.ijthermalsci.2017.07.025
[36] Wahyudi, S., Vardiansyah, N. R., & Setyorini, P. H. (2022). E ect of blood perfusion on temperature distribution in the multilayer of the human body with interstitial hyperthermia treatment for tumour therapy. CFD Letters, 14(6), 102{114. https://doi.org/10.37934/cfdl.14.6.102114