[1] Abbasi, GH., & Malek, A. (2019). Hyperthermia cancer therapy by domain decomposition methods using strongly continuous semigroups. Mathematics and Computers in Simulation, 165, 1{12.
https://doi.org/10.1016/j.matcom.2019.02.015
[2] Akula, S. C., & Maniyeri, R. (2020). Numerical simulation of bioheat transfer: a comparative study on hyperbolic and parabolic heat conduction. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(62), 1{13.
https://doi.org/10.1007/s40430-019-2132-x
[3] Al-Humedi, H. O., & Al-Saadawi, F. A. (2021). The numerical solution of bioheat equation based on shifted Legendre polynomial. International Journal of Nonlinear Analysis and Applications, 12(2), 1061{1070.
https://doi.org/10.22075/ijnaa.2021.5175
[4] Askarizadeh, H., & Ahmadikia, H. (2015). Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Applied Mathematical Modelling, 39(13), 3704{3720.
https://doi.org/10.1016/j.apm.2014.12.003
[5] Boyce, W. E., DiPrima, R. C., & Meade, D. B. (1992). Elementary di erential equations and boundary value problems (Vol. 9). New York: Wiley.
[6] COMSOL Modeling Software. (2023). COMSOL Multiphysics version: 6.2. Burlington, MA, United States: COMSOL Inc.
https://www.comsol.com
[7] Curtain, R. F., & Zwart, H. (1995). An introduction to in nite-dimensional linear systems theory (Vol. 21). New York: Springer-Verlag.
[8] Durbin, F. (1974). Numerical inversion of Laplace transforms: an ecient improvement to Dubner and Abate's method. The Computer Journal, 17(4), 371{376.
https://doi.org/10.1093/comjnl/17.4.371
[14] Kazemi Alamouti, A., Habibi, M. R., Mazidi Sharfabadi, M., & Akbari Lalimi, H. (2021). Numerical study on the e ects of blood perfusion and tumor metabolism on tumor temperature for targeted hyperthermia considering a realistic geometrical model of head layers using the nite element method. SN Applied Sciences, 3(462), 1{17.
https://doi.org/10.1007/s42452-021-04447-1
[15] Li, E., Liu, G. R., Tan, V., & He, Z. C. (2010). Modeling and simulation of bioheat transfer in the human eye using the 3D alpha nite element method ( FEM). International Journal for Numerical Methods in Biomedical Engineering, 26(8), 955{976.
https://doi.org/10.1002/cnm.1372
[16] Li, X., Li, C., Xue, Z., & Tian, X. (2018). Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties. International Journal of Thermal Sciences, 124, 459{466.
https://doi.org/10.1016/j.ijthermalsci.2017.11.002
[17] Lin, S. M., & Li, C. Y. (2017). Semi-analytical solution of bio-heat conduction for multi-layers skin subjected to laser heating and uid cooling. Journal of Mechanics in Medicine and Biology, 17(2), 1750029{25.
https://doi.org/10.1142/s0219519417500294
[19] Liu, K. C., & Chen, T. M. (2018). Analysis of the thermal response and requirement for power dissipation in magnetic hyperthermia with the e ect of blood temperature. International Journal of Heat and Mass Transfer, 126, 1048{1056.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.024
[20] Liu, K. C., & Chen, Y. S. (2016). Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. International Journal of Thermal Sciences, 103, 1{9.
https://doi.org/10.1016/j.ijthermalsci.2015.12.005
[22] Ma, J., Yang, X., Sun, Y., Yang, J., & Yu, J. (2019). Theoretical analysis of nanoshell-assisted thermal treatment for subcutaneous tumor. Journal of The Mechanical Beha-vior of Biomedical Materials, 93, 70{80.
https://doi.org/10.1016/j.jmbbm.2019.01.016
[27] Mital, M., & Tafreshi, H. V. (2012). A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment. International Journal for Numerical Methods in Biomedical Engineering, 28(2), 205{213.
https://doi.org/10.1002/cnm.1456
[28] Narasimhan, A., & Jha, K. K. (2012). Bio-heat transfer simulation of retinal laser irradiation. International Journal for Numerical Methods in Biomedical Engineering, 28(5), 547{559.
https://doi.org/10.1002/cnm.1489
[30] Saiko, G. (2022). Skin temperature: the impact of perfusion, epidermis thickness, and skin wetness. Applied Sciences, 12(14), 7106{7120.
https://doi.org/10.3390/app12147106
[31] Shirkavand, A., & Nazif, H. R. (2019). Numerical study on the e ects of blood perfusion and body metabolism on the temperature pro le of human forearm in hyperthermia conditions. Journal of Thermal Biology, 84, 339{350.
https://doi.org/10.1016/j.jtherbio.2019.07.023
[33] Smith, G. D. (1985). Numerical solution of partial di erential equations: nite di erence methods. United Kingdom: Clarendon Press.
[34] Stade, E. (2011). Fourier analysis (Vol. 109). Germany: Wiley.
[35] Udayraj, Talukdar, P., Das, A. & Alagirusamy, R. (2017). Numerical investigation of the e ect of air gap orientations and heterogeneous air gap in thermal protective clothing on skin burn. International Journal of Thermal Sciences, 121, 313{321.
https://doi.org/10.1016/j.ijthermalsci.2017.07.025
[36] Wahyudi, S., Vardiansyah, N. R., & Setyorini, P. H. (2022). E ect of blood perfusion on temperature distribution in the multilayer of the human body with interstitial hyperthermia treatment for tumour therapy. CFD Letters, 14(6), 102{114. https://doi.org/10.37934/cfdl.14.6.102114