Algebra fuzzy norms generated by homomorphisms

Document Type : Research Paper

Authors

Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box: 3619995161-316, Shahrood, Iran

Abstract

‎‎‎As a new approach, for a nonzero normed algebra $A$, we will define some different classes of algebra fuzzy norms on $A$ generated by homomorphisms and continuous homomorphisms. Also as a source of examples and counterexamples in the field of fuzzy normed algebras, separate continuity of the elements within each class are investigated.

Keywords

Main Subjects


[1] Bag, T., & Samanta, S. K. (2003). Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math., 11, (3), 687-705.
[2] Bag, T., & Samanta, S. K. (2013). Finite dimensional fuzzy normed linear spaces. Ann. Fuzzy Math. Inform., 6, (2), 271-283.
[3] Bag, T., & Samanta, S. K. (2005). Fuzzy bounded linear operators. Fuzzy Sets and Syst., 151, 513-547. https://doi.org/10.1016/j.fss.2004.05.004.
[4] Bag, T., & Samanta, S. K. (2006). Fixed point theorems on fuzzy normed linear spaces. Inf. Sci., 176, 2910-2931. https://doi.org/10.1016/j.ins.2005.07.013.
[5] Bag, T., & Samanta, S. K. (2007). Some  xed point theorems on fuzzy normed linear spaces. Inf. Sci., 177, 3271-3289. https://doi.org/10.1016/j.ins.2007.01.027.
[6] Cheng, S. C., & Mordeson, J. N. (1994). Fuzzy linear operators and fuzzy normed linear spaces. Bull. Cal. Math. Soc., 86, 429-436.
[7] Felbin, C. (1992). Finite dimensional fuzzy normed linear spaces. Fuzzy Sets and Syst., 48, 239-248. https://doi.org/10.1016/0165-0114(92)90338-5.
[8] Golet, Ioan. (2010). On generalized fuzzy normed spaces and coincidence point theorems. Fuzzy Sets and Syst., 161, 1138-1144. https://doi.org/10.1016/j.fss.2009.10.004.
[9] Hasankhani, A., Nazari, A., & Saheli, M. (2010). Some properties of fuzzy Hilbert spaces and norm of operators. Iran. J. Fuzzy Syst., 7, (3), 129-157. https://doi.org/10.22111/ijfs.2010.196.
[10] Kaleva, O., & Seikkala, S. (1984). On fuzzy metric spaces. Fuzzy Sets and Syst., 12, 215-229. https://doi.org/10.1016/0165-0114(84)90069-1.
[11] Katsaras, A. K. (1984). Fuzzy topological vector spaces. Fuzzy Sets and Syst., 12, 143-154. https://doi.org/10.1016/0165-0114(84)90034-4.
[12] Kramosil, A. K., & Michalek, J. (1975). Fuzzy metric and statistical metric spaces. Kybernetika, 11, 326-334.
[13] Mirmostafaee, A. K. (2012). Perturbation of generalized derivations in fuzzy Menger normed algebras. Fuzzy Sets and Syst., 195, 109-117. https://doi.org/10.1016/j.fss.2011.10.015.
[14] Tripathy, B.C., & Debnath, S. (2013). On generalized di erence sequence spaces of fuzzy numbers. Acta Sci. Technol., 35, (1), 117-121. https://doi.org/10.4025/actascitechnol.v35i1.15566.
[15] Tripathy, B.C., & Sen, M. (2013). On fuzzy I-convergent di erence sequence spaces. J. Intell. Fuzzy Syst., 25, (3), 643-647. https://doi.org/10.3233/IFS-120671.