[1] Carden R. & Embree M. (2012) Ritz value localization for non-Hermitian matrices, SIAM Journal Matrix Analysis and its Applications, 33, 1320-1338.
https://doi.org/10.1137/120872693
[2] Campbell, S. L., & Meyer, C. D. (2009). Generalized inverses of linear transformations. Society for industrial and applied Mathematics.
[3] Eiermann, M., Marek, I., & Niethammer, W. (1988). On the solution of singular linear systems of algebraic equations by semiiterative methods. Numerische Mathematik, 53(3), 265-283.
https://doi.org/10.1007/BF01404464
[4] Freund, R. W., & Hochbruck, M. (1994). On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling. Numerical linear algebra with applications, 1(4), 403-420.
https://doi.org/10.1002/nla.1680010406
[7] Horn R. & Johnson C. (2013) Matrix Analysis, second edition, Cambridge.
[11] Liesen J. & Tichy P. (2009) On best approximation of polynomials in matrices in the matrix 2-norm, SIAM Journal Matrix Analysis and its Applications, 31, 853-863.
https://doi.org/10.1137/080728299
[12] Nevanlinna, O.(1993) Convergence of iterations for linear equations, Lectures in Mathematics ETH Zurich. Basel: Birkhauser Verlag.
[13] Saad Y. & Schultz M.H. (1986;), GMRES: A generalized minimal residual algorithm for solving non symmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856-869.
https://doi.org/10.1137/0907058
[16] Simeon, B., Fuhrer, C., & Rentrop, P. (1993). The Drazin inverse in multibody system dynamics. Numerische Mathematik, 64, 521-539.
https://doi.org/10.1007/BF01388703
[17] Toh K.C. (1996) Matrix approximation problems and nonsymmetric iterative methods, PhD dissertation, Cornell University, Ithaca, NY.