[2] Amiri, M., & Balakrishnan, N. (2022). Hessian and increasing-Hessian orderings of scale-shape mixtures of multivariate skew-normal distributions and applications. Journal of Computational and Applied Mathematics, 402, 113801.
https://doi.org/10.1016/j.cam.2021.113801
[4] Azzalini, A., & Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press.
[5] Bodie, Z., & Kane, A. (2020). Essentials of investments.
[7] Cont, R. (2007). Volatility clustering in nancial markets: empirical facts and agentbased models. In Long memory in economics (pp. 289-309). Berlin, Heidelberg: Springer Berlin Heidelberg.
[8] Denkowska, A., & Wanat, S. (2020). A tail dependence-based MST and their topological indicators in modeling systemic risk in the European insurance sector. Risks, 8(2), 39.
https://doi.org/10.3390/risks8020039
[9] Fabozzi, F. J., Markowitz, H. M., & Gupta, F. (2008). Portfolio selection. Handbook of nance.
[12] Ferreira, C. S., Lachos, V. H., & Bolfarine, H. (2016). Likelihood-based inference for multivariate skew scale mixtures of normal distributions. AStA Advances in Statistical Analysis, 100(4), 421-441.
https://doi.org/10.1007/s10182-016-0266-z
[13] Gomez-Deniz, E., Caldern-Ojeda, E., & Gomez, H. W. (2022). Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III. Symmetry, 14(10), 21-43.
https://doi.org/10.3390/sym14102143
[14] Hardle, W. K., & Simar, L. (2019). Applied multivariate statistical analysis. Springer Nature.
[16] Jamalizadeh, A., & Lin, T. I. (2017). A general class of scale-shape mixtures of skewnormal distributions: properties and estimation. Computational Statistics, 32, 451-474.
https://doi.org/10.1007/s00180-016-0691-1
[17] Jorion, P. (2007). Value at risk: the new benchmark for managing nancial risk. McGraw-Hill.
[18] Junior, L. S., & Franca, I. D. P. (2012). Correlation of nancial markets in times of crisis. Physica A: Statistical Mechanics and its Applications, 391(1-2), 187-208.
https://doi.org/10.1016/j.physa.2011.07.023
[19] Kotz, S., Balakrishnan, N., & Johnson, N. L. (2004). Continuous multivariate distributions, Volume 1: Models and applications (Vol. 1). John Wiley & Sons.
[22] Mahdavi, A., Amirzadeh, V., Jamalizadeh, A., & Lin, T. I. (2021). A Multivariate exible skew-symmetric-normal distribution: Scale-shape mixtures and parameter estimation via selection representation. Symmetry, 13(8), 1343.
https://doi.org/10.3390/sym13081343
[23] Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic Press.
[24] Mata, L. M., Nu~nez Mora, J. A., & Serrano Bautista, R. (2021). Multivariate Distribution in the Stock Markets of Brazil, Russia, India, and China. SAGE Open, 11(2), 21582440211009509.
https://doi.org/10.1177/21582440211009509
[25] McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools. Princeton university press.
[28] Naderi, M., Arabpour, A., & Jamalizadeh, A. (2018). Multivariate normal mean-variance mixture distribution based on Lindley distribution. Communications in Statistics-Simulation and Computation, 47, 1179{1192.
https://doi.org/10.1080/03610918.2017.1307400
[29] Pourmousa, R., Jamalizadeh, A., & Rezapour, M. (2015). Multivariate normal mean{variance mixture distribution based on Birnbaum{Saunders distribution. Journal of Statistical Computation and Simulation, 85(13), 2736{2749.
https://doi.org/10.1080/00949655.2014.937435
[30] Pu, T., Zhang, Y., & Yin, C. (2023). Generalized location-scale mixtures of elliptical distributions: De nitions and stochastic comparisons. Communications in Statistics-Theory and Methods, 1-25.
https://doi.org/10.1080/03610926.2023.2165407