[2] Azevedo, C. & Oliveira, P. E. (2000). Kernel-type estimation of bivariate distribution function for associated random variables. New Trends in Probability and Statistics, 5, 17{25.
https://doi.org/10.1515/9783110944655.17
[3] Chacon, J. E. & Rodriguez-Casal, A. (2010). A note on the universal consistency of the kernel distribution function estimator. Statistics and Probability Letters, 80, 1414{1419.
https://doi.org/10.1016/j.spl.2010.05.007
[4] Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Memoirs of American Mathematical Society, 6, 1{12.
[7] Geenens, G. & Wang, C. (2018). Local-likelihood transformation kernel density estimation for positive random variables. Journal of Computational and Graphical Statistics, 27(4), 822{835.
https://doi.org/10.1080/10618600.2018.1424636
[8] Hart, J. D. & Canette, I. (2011). Nonparametric estimation of distributions in random e ects models. Journal of Computational and Graphical Statistic, 20(2), 461{478.
https://doi.org/10.1198/jcgs.2011.09121
[9] Henriques, C. & Oliveira, P. E. (2003). Estimation of a two dimensional distribution function under association. Journal of Statistical Planning and Inference, 113(1), 137{150.
https://doi.org/10.1016/S0378-3758(01)00296-8
[10] Henriques, C. & Oliveira, P. E. (2008). Strong convergence rates for the estimation of a covariance operator for associated samples. Statistical Inference for Stochastic Processes, 11, 77|91.
https://doi.org/10.1007/s11203-006-9007-3
[11] Jabbari, H. (2009). Almost sure convergence of kernel bivariate distribution function estimator under negative association. Journal of Statistical Research of Iran, 6, 243{255.
https://sid.ir/paper/129949/en
[12] Jabbari, H. (2013). On almost sure convergence for weighted sums of pairwise negatively quadrant dependent random variables. Statistical Papers, 54(3), 765{772.
https://doi.org/10.1007/s00362-012-0460-3
[13] Jabbari, H. & Azarnoosh, H. A. (2006). Almost sure convergence rates for the estimation of a covariance operator for negatively associated samples. Journal of Iranian Statistical Society, 5(1-2), 53{67.
https://sid.ir/paper/567630/en
[16] Koekemoer G. & Swanepoel Jan W. H. (2008). Transformation kernel density estimation with applications. Journal of Computational and Graphical Statistics, 17(3), 750{769.
https://doi.org/10.1198/106186008X318585
[18] Miao, Yu., Zhao, F., Wang, K. & Chen, Y. (2013). Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors. Statistical Papers, 54(1), 193{206.
https://doi.org/10.1007/s00362-011-0418-x
[20] Newman, C. M. (1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. Lecture Notes-Monograph Series, 5, 127{140.
https://doi.org/10.1214/lnms/1215465639
[21] Sadikova, S. M. (1966). Two-dimensional analogies of an inequality of Esseen with applications to the central limit theorem. Theory of Probability and Its Applications, 11(3), 325{335.
https://doi.org/10.1137/1111035
[22] Shao, Q. M. (2000). A comparison theorem on maximal inequality between negatively associated and independent random variables. Journal of Theoretical Probability, 13, 343{356.
https://doi.org/10.1023/A:1007849609234
[23] Su, C. & Chi, X. (1988). Some results on CLT for nonstationary NA sequences. Acta Mathematicae Applicatae Sinica, 21(1), 9{21. https://applmath.cjoe.ac.cn/jweb yysxxb en
[24] Su, C., Zhao, L. C. & Wang, Y. B. (1997). Moment inequalities and weak convergence for negatively associated sequences. Science in China (series A), 40, 172{182.
https://doi.org/10.1007/BF02874436
[26] Yu, M., Zhao, F., Wang, K. & Chen, Y. (2013). Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors. Statistical Papers, 54(1), 193{206.
https://doi.org/10.1007/s00362-011-0418-x
[27] Yuan, M., Su, C. & Hu, T. (2003). A central limit theorem for random elds of negatively associated process. Journal of Theoretical Probability, 16, 309{323.
https://doi.org/10.1023/A:1023538824937
[29] Zhou, Y. (1996). A note on the TJW product-limit estimator for truncated and censored data. Statistics and Probability Letters, 26(4), 381{387. https://doi.org/10.1016/0167-7152(95)00035-6