On the Kernels of Frobenius Groups

Document Type : Research Paper

Authors

1 School of Mathematics‎, ‎Statistics‎, ‎and Computer Science‎, College of Science‎, University of Tehran‎, Tehran‎, ‎Iran.

2 Pure and Applied Analytics‎, ‎School of Mathematical and Statistical Sciences‎, North-West University‎, Mahikeng Campus‎, ‎Mmabatho‎, ‎South Africa.

Abstract

A Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. Using character theory, it is proved that the Frobenius kernel is a normal subgroup of its Frobenius group. In this paper, we present some group-theoretical proofs that the Frobenius kernel is a subgroup of its Frobenius group under certain conditions.

Keywords

Main Subjects


[1] Burnside, W. (1955). Theory of Groups of Finite Order. Dover publishing Inc., second edition, New York.
[2] Darafsheh, M. R. (2023). Some properties of the  nite Frobenius groups. Aut J. Math. and comput., 4(1), 57-61.
[3] Dornho , L. (1971). Group Representation Theory, Part A: ordinary representation theory. Vol 7, Pure and Appl. Math, Marcel Dekker, Inc., New York.
[4] Feit, W. (1956). On a conjecture of Frobenius. Proc. Amer. Math. Soc., 7: 177-187.
[5] Frobenius, G. (1901). Uber auosbare Gruppen. IV., Berl. Ber., PP. 1216-1230.
[6] Grove, L. C. (1997). Groups and Characters, Pure and Appl. Math John Wiley and sons Inc. New York .
[7] Grun, O. (1948). Beitrage zur Gruppentheorie. II. Uber ein Satz von Frobenius. J. Reine und Angew. Math.,186, 165{169.
[8] Hall Jr, M. (1959). The Theory of Groups. The Macmillan company, New York.
[9] Huppert, B. (1967). Endliche Gruppen. Springer-Verlag.
[10] Knapp, W., & Schmid, P. (2009). A note on Frobenius groups. Journal of group theory, 12: 393-400.
[11] Knapp, W., & Schmid, P. (2021). Frobenius groups of low rank. Acch Math., 117: 121-127.
[12] Kurzweil, H., & Stellmacher, B. (2004). The Theory of Finite Groups. Springer-Verlag, New York, Berlin, Heidelberg.
[13] Scott, W. R. (1964). Group theory. Dover publishing Inc. NewYork.
[14] Shaw, R. H. (1952). Remarks on a theorem of Frobenius. Proc. Amer. Math. Soc., 3: 970-972.
[15] Tao, T. C. (2013). A Fourier-analytic proof of Frobenius theorem. World press. Monthly Archive for May 2013.
[16] Thompson, J. G. (1960). Normal p-complements for  nite groups. Mathematische Zeitschrift, 72: 332{354.