1] Ahmad, H., Khan, T. A., Stanimirovic, P. S., Chu, Y. M., & Ahmad, I. (2020). Modi ed Variational Iteration Algorithm-II: Convergence and Applications to Di usion Models. Complexity, 2020(1), 8841718.
https://doi.org/10.1155/2020/8841718
[2] Akrami, M. H., & Owolabi, K. M. (2023). On the solution of fractional di erential equations using Atangana's beta derivative and its applications in chaotic systems. Scienti c African, 21, e01879..
https://doi.org/10.1016/j.sciaf.2023.e01879
[3] Allahviranloo, T., Jafarian, A., Saneifard, R., Ghalami, N., Measoomy Nia, S., Kiani, F., Fernandez-Gamiz, U., & Noeiaghdam, S. (2023). An application of arti cial neural networks for solving fractional higher-order linear integrodi erential equations. Boundary Value Problems, 2023, 74.
https://doi.org/10.1186/s13661-023-01762-x
[4] Amdouni, M., Alzabut, J., Samei, M. E., Sudsutad, W., & Thaiprayoon, C. (2022). A generalized approach of the Gilpin{Ayala model with fractional derivatives under numerical simulation. Mathematics, 10(19), 3655.
https://doi.org/10.3390/math10193655
[5] Caputo, M., & Mainardi, F. (1971). Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento (1971-1977), 1(2), 161-198.
http://dx.doi.org/10.1007/BF02820620
[7] Dehghan, M. (2004). Application of the Adomian decomposition method for two-dimensional parabolic equation subject to nonstandard boundary speci cations. Applied mathematics and computation, 157(2), 549-560.
https://doi.org/10.1016/j.amc.2003.08.098
[8] Dehghan, M., & Salehi, R. (2011). The use of variational iteration method and Adomian decomposition method to solve the Eikonal equation and its application in the reconstruction problem. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 524-540.
https://doi.org/10.1002/cnm.1315
[9] Diethelm, K., & Freed, A. D. (1999). On the solution of nonlinear fractional-order di erential equations used in the modeling of viscoplasticity. In Scienti c computing in chemical engineering II: computational uid dynamics, reaction engineering, and molecular properties (pp. 217-224). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-60185-924
[10] Dubey, S., Chakraverty, S., & Kundu, M. (2024). Taylor series expansion approach for solving fractional order heat-like and wave-like equations. In Computation and Modeling for Fractional Order Systems (pp. 125-134). Academic Press.
https://doi.org/10.1016/B978-0-44-315404-1.00013-8
[13] Hanyga, A. (2002). Multi{dimensional solutions of space{time{fractional di usion equations. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458(2018), 429-450.
https://doi.org/10.1098/rspa.2001.0893
[14] Hammad, H. A., Rashwan, R. A., Nafea, A., Samei, M. E., & Noeiaghdam, S. (2024). Stability analysis for a tripled system of fractional pantograph di erential equations with nonlocal conditions. Journal of Vibration and Control, 30(3-4), 632-647.
https://doi.org/10.1177/10775463221149232
[19] Hesameddini, E., & Lati zadeh, H. (2009). Reconstruction of variational iteration algorithms using the Laplace transform. International Journal of Nonlinear Sciences and Numerical Simulation, 10(11-12), 1377-1382.
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1377
[22] Karaca, Y., & Baleanu, D. (2023). Advanced Fractional Mathematics, Fractional Calculus, Algorithms and Arti cial Intelligence with Applications in Complex Chaotic Systems. Chaos Theory and Applications, 5(4), 257-266.
[23] Khan, N. A., Ibrahim Khalaf, O., Andres Tavera Romero, C., Sulaiman, M., & Bakar, M. A. (2022). Application of intelligent paradigm through neural networks for numerical solution of multiorder fractional di erential equations. Computational Intelligence and Neuroscience, 2022(1), 2710576.
https://doi.org/10.1155/2022/2710576
[24] Kumar, D., Singh, J., & Kumar, S. (2015). Numerical computation of fractional multidimensional di usion equations by using a modi ed homotopy perturbation method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 17, 20-26.
https://doi.org/10.1016/j.jaubas.2014.02.002
[27] Matar, M. M., Samei, M. E., Etemad, S., Amara, A., Rezapour, S., & Alzabut, J. (2024). Stability Analysis and Existence Criteria with Numerical Illustrations to Fractional Jerk Di erential System Involving Generalized Caputo Derivative. Qualitative Theory of Dynamical Systems, 23(3), 111.
https://doi.org/10.1007/s12346-024-00970-9
[28] Mentrelli, A., & Pagnini, G. (2015). Front propagation in anomalous di usive media governed by time-fractional di usion. Journal of Computational Physics, 293, 427-441.
https://doi.org/10.1016/j.jcp.2014.12.015
[30] Mohammadaliee, B., Roomi, V., & Samei, M. E. (2024). SEIARS model for analyzing COVID-19 pandemic process via -Caputo fractional derivative and numerical simulation. Scienti c Reports, 14(1), 723.
https://doi.org/10.1038/s41598-024-51415-x
[31] Momani, S. (2005). Analytical approximate solution for fractional heat-like and wave-like equations with variable coecients using the decomposition method. Applied Mathematics and Computation, 165(2), 459-472.
https://doi.org/10.1016/j.amc.2004.06.025
[32] Momani, S., & Odibat, Z. (2007). Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Computers & Mathematics with Applications, 54(7-8), 910-919.
https://doi.org/10.1016/j.camwa.2006.12.037
[34] Mustapha, K. (2011). An implicit nite-di erence time-stepping method for a sub-di usion equation, with spatial discretization by nite elements. IMA Journal of Numerical Analysis, 31(2), 719-739.
https://doi:10.1093/imanum/drp057
[35] Odibat, Z., & Momani, S. (2008). Modi ed homotopy perturbation method: application to quadratic Riccati di erential equation of fractional order. Chaos, Solitons & Fractals, 36(1), 167-174.
https://doi.org/10.1016/j.chaos.2006.06.041
[36] Podlubny, I. (1998). Fractional di erential equations: an introduction to fractional derivatives, fractional di erential equations, to methods of their solution and some of their applications. elsevier.
https://doi.org/10.1016/s0076-5392(99)x8001-5
[37] Priya, G. S., Prakash, P., Nieto, J. J., & Kayar, Z. (2013). Higher-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions. Numerical Heat Transfer, Part B: Fundamentals, 63(6), 540-559.
https://doi.org/10.1080/10407790.2013.778719
[38] Quintana-Murillo, J., & Yuste, S. B. (2013). A nite di erence method with non-uniform timesteps for fractional di usion and di usion-wave equations. The European Physical Journal Special Topics, 222(8), 1987-1998. https://doi: 10.1140/epjst/e2013-01979-7
[39] Rezapour, S., Mohammadi, H., & Samei, M. E. (2020). SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Advances in di erence equations, 2020, 1-19.
https://doi.org/10.1186/s13662-020-02952-y
[40] Saifullah, S., Ali, A., Khan, A., Shah, K., & Abdeljawad, T. (2008). A Novel Tempered Fractional Transform: Theory, Properties and Appli. J. Vib. Control, 14, 1431-1442.
https://doi.org/10.1142/S0218348X23400455
[42] Singh, B. K., & Srivastava, V. K. (2015). Approximate series solution of multi-dimensional, time fractional-order (heat-like) di usion equations using FRDTM. Royal Society Open Science, 2(4), 140511.
https://doi.org/10.1098/rsos.140511
[43] Sivashankar, M., Sabarinathan, S., Govindan, V., Fernandez-Gamiz, U., & Noeiaghdam, S. (2023). Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional di erential equation. Aims Math, 8(2), 2720-2735. https://doi: 10.3934/math.2023143
[44] Viera-Martin, E., Gomez-Aguilar, J. F., Sols-Perez, J. E., Hernandez-Perez, J. A., & Escobar-Jimenez, R. F. (2022). Arti cial neural networks: a practical review of applications involving fractional calculus. The European Physical Journal Special Topics, 231(10), 2059-2095.
https://doi.org/10.1140/epjs/s11734-022-00455-3
[48] Zeinadini, M., & Namjoo, M. (2017). A numerical method for discrete fractional{order chemostat model derived from nonstandard numerical scheme. Bulletin of the Iranian Mathematical Society, 43(5), 1165-1182.
[49] Zhang, Y. N., Sun, Z. Z., & Liao, H. L. (2014). Finite di erence methods for the time fractional di usion equation on non-uniform meshes. Journal of Computational Physics, 265, 195-210.
https://doi.org/10.1016/j.jcp.2014.02.008