‎Exact analytical solution of tempered fractional heat-like (diffusion) equations by the modified variational iteration method

Document Type : Research Paper

Authors

1 Department of Mathematics, Yazd University, Yazd, Iran

2 Department of Mathematics, Daykondi University, Nili, Afghanistan

Abstract

‎    This paper introduces a modified version of the Variational Iteration Method, incorporating $\mathbb{P}$-transformation. We propose a novel semi-analytical technique named the modified variational iteration method   for addressing fractional differential equations featuring tempered Liouville-Caputo derivatives. The modified variational iteration method emerges as a highly efficient and powerful mathematical tool, offering exact or approximate solutions for a diverse range of real-world problems in engineering and the natural sciences, specifically those expressed through differential equations. To assess its effectiveness and accuracy, we scrutinize the modified variational iteration method by applying it to three problems related to the heat-like multidimensional diffusion equation with a fractional time derivative in a tempered Liouville-Caputo form.

Keywords

Main Subjects


1] Ahmad, H., Khan, T. A., Stanimirovic, P. S., Chu, Y. M., & Ahmad, I. (2020). Modi ed Variational Iteration Algorithm-II: Convergence and Applications to Di usion Models. Complexity, 2020(1), 8841718. https://doi.org/10.1155/2020/8841718
[2] Akrami, M. H., & Owolabi, K. M. (2023). On the solution of fractional di erential equations using Atangana's beta derivative and its applications in chaotic systems. Scienti c African, 21, e01879.. https://doi.org/10.1016/j.sciaf.2023.e01879
[3] Allahviranloo, T., Jafarian, A., Saneifard, R., Ghalami, N., Measoomy Nia, S., Kiani, F., Fernandez-Gamiz, U., & Noeiaghdam, S. (2023). An application of arti cial neural networks for solving fractional higher-order linear integrodi erential equations. Boundary Value Problems, 2023, 74. https://doi.org/10.1186/s13661-023-01762-x
[4] Amdouni, M., Alzabut, J., Samei, M. E., Sudsutad, W., & Thaiprayoon, C. (2022). A generalized approach of the Gilpin{Ayala model with fractional derivatives under numerical simulation. Mathematics, 10(19), 3655. https://doi.org/10.3390/math10193655
[5] Caputo, M., & Mainardi, F. (1971). Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento (1971-1977), 1(2), 161-198. http://dx.doi.org/10.1007/BF02820620
[6] Das, S. (2009). A note on fractional di usion equations. Chaos, Solitons & Fractals, 42(4), 2074-2079. https://doi.org/10.1016/j.chaos.2009.03.163
[7] Dehghan, M. (2004). Application of the Adomian decomposition method for two-dimensional parabolic equation subject to nonstandard boundary speci cations. Applied mathematics and computation, 157(2), 549-560.
https://doi.org/10.1016/j.amc.2003.08.098
[8] Dehghan, M., & Salehi, R. (2011). The use of variational iteration method and Adomian decomposition method to solve the Eikonal equation and its application in the reconstruction problem. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 524-540. https://doi.org/10.1002/cnm.1315
[9] Diethelm, K., & Freed, A. D. (1999). On the solution of nonlinear fractional-order di erential equations used in the modeling of viscoplasticity. In Scienti c computing in chemical engineering II: computational uid dynamics, reaction engineering, and molecular properties (pp. 217-224). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60185-924
[10] Dubey, S., Chakraverty, S., & Kundu, M. (2024). Taylor series expansion approach for solving fractional order heat-like and wave-like equations. In Computation and Modeling for Fractional Order Systems (pp. 125-134). Academic Press.
https://doi.org/10.1016/B978-0-44-315404-1.00013-8
[11] Galeone, L., & Garrappa, R. (2008). Fractional adams{moulton methods. Mathematics and Computers in Simulation, 79(4), 1358-1367. 2008. https://doi.org/10.1016/j.matcom.2008.03.008
[12] Goldfain, E. (2004). Fractional dynamics, Cantorian space{time and the gauge hierarchy problem. Chaos, Solitons & Fractals, 22(3), 513-520. https://doi.org/10.1016/j.chaos.2004.02.043
[13] Hanyga, A. (2002). Multi{dimensional solutions of space{time{fractional di usion equations. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458(2018), 429-450. https://doi.org/10.1098/rspa.2001.0893
[14] Hammad, H. A., Rashwan, R. A., Nafea, A., Samei, M. E., & Noeiaghdam, S. (2024). Stability analysis for a tripled system of fractional pantograph di erential equations with nonlocal conditions. Journal of Vibration and Control, 30(3-4), 632-647.
https://doi.org/10.1177/10775463221149232
[15] Hassouna, M., & Ouhadan, A. (2022). Fractional calculus: applications in rheology. In Fractional order systems (pp. 513-549). Academic Press. https://doi.org/10.1016/B978-0-12-824293-3.00018-1
[16] Hattaf, K. (2022). On the stability and numerical scheme of fractional di erential equations with application to biology. Computation, 10(6), 97. https://doi.org/10.3390/computation10060097
[17] He, J. H. (1999). Homotopy perturbation technique. Computer methods in applied mechanics and engineering, 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
[18] He, J. H. (1999). Variational iteration method{a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics, 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
[19] Hesameddini, E., & Lati zadeh, H. (2009). Reconstruction of variational iteration algorithms using the Laplace transform. International Journal of Nonlinear Sciences and Numerical Simulation, 10(11-12), 1377-1382. https://doi.org/10.1515/IJNSNS.2009.10.11-12.1377
[20] Hilfer, R. (Ed.). (2000). Applications of fractional calculus in physics. World scienti c. https://doi.org/10.1142/9789812817747
[21] Jafari, H., & Momani, S. (2007). Solving fractional di usion and wave equations by modi ed homotopy perturbation method. Physics Letters A, 370(5-6), 388-396. https://doi.org/10.1016/j.physleta.2007.05.118
[22] Karaca, Y., & Baleanu, D. (2023). Advanced Fractional Mathematics, Fractional Calculus, Algorithms and Arti cial Intelligence with Applications in Complex Chaotic Systems. Chaos Theory and Applications, 5(4), 257-266.
[23] Khan, N. A., Ibrahim Khalaf, O., Andres Tavera Romero, C., Sulaiman, M., & Bakar, M. A. (2022). Application of intelligent paradigm through neural networks for numerical solution of multiorder fractional di erential equations. Computational Intelligence and Neuroscience, 2022(1), 2710576. https://doi.org/10.1155/2022/2710576
[24] Kumar, D., Singh, J., & Kumar, S. (2015). Numerical computation of fractional multidimensional di usion equations by using a modi ed homotopy perturbation method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 17, 20-26. https://doi.org/10.1016/j.jaubas.2014.02.002
[25] Mainardi, F. (1996). Fractional relaxation-oscillation and fractional di usion-wave phenomena. Chaos, Solitons & Fractals, 7(9), 1461-1477. https://doi.org/10.1016/0960-0779(95)00125-5
[26] Machado, J. T., & Kiryakova, V. (2017). The chronicles of fractional calculus. Fractional Calculus and Applied Analysis, 20(2), 307-336. https://doi.org/10.1515/fca-2017-0017
[27] Matar, M. M., Samei, M. E., Etemad, S., Amara, A., Rezapour, S., & Alzabut, J. (2024). Stability Analysis and Existence Criteria with Numerical Illustrations to Fractional Jerk Di erential System Involving Generalized Caputo Derivative. Qualitative Theory of Dynamical Systems, 23(3), 111. https://doi.org/10.1007/s12346-024-00970-9
[28] Mentrelli, A., & Pagnini, G. (2015). Front propagation in anomalous di usive media governed by time-fractional di usion. Journal of Computational Physics, 293, 427-441. https://doi.org/10.1016/j.jcp.2014.12.015
[29] Milici, C., Draganescu, G., & Machado, J. T. (2018). Introduction to fractional di erential equations (Vol. 25). Springer. https://doi.org/10.1007/978-3-030-00895-6
[30] Mohammadaliee, B., Roomi, V., & Samei, M. E. (2024). SEIARS model for analyzing COVID-19 pandemic process via  -Caputo fractional derivative and numerical simulation. Scienti c Reports, 14(1), 723. https://doi.org/10.1038/s41598-024-51415-x
[31] Momani, S. (2005). Analytical approximate solution for fractional heat-like and wave-like equations with variable coecients using the decomposition method. Applied Mathematics and Computation, 165(2), 459-472. https://doi.org/10.1016/j.amc.2004.06.025
[32] Momani, S., & Odibat, Z. (2007). Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Computers & Mathematics with Applications, 54(7-8), 910-919. https://doi.org/10.1016/j.camwa.2006.12.037
[33] Momani, S., & Odibat, Z. (2007). Homotopy perturbation method for nonlinear partial di erential equations of fractional order. Physics Letters A, 365(5-6), 345-350. https://doi.org/10.1016/j.physleta.2007.01.046
[34] Mustapha, K. (2011). An implicit  nite-di erence time-stepping method for a sub-di usion equation, with spatial discretization by  nite elements. IMA Journal of Numerical Analysis, 31(2), 719-739. https://doi:10.1093/imanum/drp057
[35] Odibat, Z., & Momani, S. (2008). Modi ed homotopy perturbation method: application to quadratic Riccati di erential equation of fractional order. Chaos, Solitons & Fractals, 36(1), 167-174. https://doi.org/10.1016/j.chaos.2006.06.041
[36] Podlubny, I. (1998). Fractional di erential equations: an introduction to fractional derivatives, fractional di erential equations, to methods of their solution and some of their applications. elsevier. https://doi.org/10.1016/s0076-5392(99)x8001-5
[37] Priya, G. S., Prakash, P., Nieto, J. J., & Kayar, Z. (2013). Higher-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions. Numerical Heat Transfer, Part B: Fundamentals, 63(6), 540-559. https://doi.org/10.1080/10407790.2013.778719
[38] Quintana-Murillo, J., & Yuste, S. B. (2013). A  nite di erence method with non-uniform timesteps for fractional di usion and di usion-wave equations. The European Physical Journal Special Topics, 222(8), 1987-1998. https://doi: 10.1140/epjst/e2013-01979-7
[39] Rezapour, S., Mohammadi, H., & Samei, M. E. (2020). SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Advances in di erence equations, 2020, 1-19. https://doi.org/10.1186/s13662-020-02952-y
[40] Saifullah, S., Ali, A., Khan, A., Shah, K., & Abdeljawad, T. (2008). A Novel Tempered Fractional Transform: Theory, Properties and Appli. J. Vib. Control, 14, 1431-1442. https://doi.org/10.1142/S0218348X23400455
[41] Shawagfeh, N. T. (2002). Analytical approximate solutions for nonlinear fractional di erential equations. Applied Mathematics and Computation, 131(2-3), 517-529. https://doi.org/10.1016/S0096-3003(01)00167-9
[42] Singh, B. K., & Srivastava, V. K. (2015). Approximate series solution of multi-dimensional, time fractional-order (heat-like) di usion equations using FRDTM. Royal Society Open Science, 2(4), 140511. https://doi.org/10.1098/rsos.140511
[43] Sivashankar, M., Sabarinathan, S., Govindan, V., Fernandez-Gamiz, U., & Noeiaghdam, S. (2023). Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional di erential equation. Aims Math, 8(2), 2720-2735. https://doi: 10.3934/math.2023143
[44] Viera-Martin, E., Gomez-Aguilar, J. F., Sols-Perez, J. E., Hernandez-Perez, J. A., & Escobar-Jimenez, R. F. (2022). Arti cial neural networks: a practical review of applications involving fractional calculus. The European Physical Journal Special Topics, 231(10), 2059-2095. https://doi.org/10.1140/epjs/s11734-022-00455-3
[45] Wazwaz, A. M., & Gorguis, A. (2004). Exact solutions for heat-like and wave-like equations with variable coecients. Applied Mathematics and Computation, 149(1), 15-29. https://doi.org/10.1016/S0096-3003(02)00946-3
[46] Wu, G. C., & Lee, E. W. M. (2010). Fractional variational iteration method and its application. Physics Letters A, 374(25), 2506-2509. https://doi.org/10.1016/j.physleta.2010.04.034
[47] Zaslavsky, G. M. (2005). Hamiltonian chaos and fractional dynamics. Oxford University Press, USA. https://doi.org/10.1093/oso/9780198526049.001.0001
[48] Zeinadini, M., & Namjoo, M. (2017). A numerical method for discrete fractional{order chemostat model derived from nonstandard numerical scheme. Bulletin of the Iranian Mathematical Society, 43(5), 1165-1182.
[49] Zhang, Y. N., Sun, Z. Z., & Liao, H. L. (2014). Finite di erence methods for the time fractional di usion equation on non-uniform meshes. Journal of Computational Physics, 265, 195-210. https://doi.org/10.1016/j.jcp.2014.02.008