Gauge equivalence problem on differential operators under fiber-preserving transformation

Document Type : Research Paper

Authors

1 Department of Mathematics‎, ‎Karaj Branch‎, ‎Islamic Azad University‎, ‎karaj‎, ‎Iran.

2 Faculty of Basic Sciences, Department of Mathematics, Babol Noshirvani University of Technology, Babol, Iran

3 School of Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract

This paper focuses on investigating the equivalence problem for fifth-order differential operators (FODOs) on the line under general fiber-preserving transformations. Utilizing the Cartan method of equivalence, the study specifically addresses the gauge equivalence problem, seeking to establish the conditions for two FODOs to be related by a fiber-preserving transformation. By analyzing the properties of these operators, the research aims to identify conditions for their transformation while maintaining the fiber structure. The systematic approach of the Cartan method is employed to derive the necessary conditions for gauge equivalence between these FODOs. The study aims to enhance understanding of the equivalence problem for FODOs and shed light on fiber-preserving transformations that uphold gauge equivalence.

Keywords

Main Subjects


[1] Bakhshandeh, M., Bakhshandeh-Chamazkoti, R., & Nadjafikhah, M. (2024) Direct Equivalence Problem on Fifth-order Differential Operator. submitted.
[2] Bakhshandeh-Chamazkoti. R. (2015). The geometry of fourth-order differential operator, International Journal of Geometric Methods in Modern Physics, 12(05), p.1550055. https://doi.org/10.1142/S0219887815500553
[3] Calmet, X. (2008). Equivalence principle and the gauge hierarchy problem, Physical Review D, 77(4). https://doi.org/10.1103/PhysRevD.77.047502
[4] Cartan, E. (1953). Les problmes d’equivalence, in Oeuvres completes, Part II, Vol. 2, Gauthiers-Villars, Paris, pp. 1311-1334.
[5] Cartan, E. (1953). Les sous-groupes des groupes continus de transformations, in Oeuvres completes, Part II, Vol. 2, Gauthiers-Villars, Paris, pp. 719-856.
[6] Cartan, E. (1955). La geometrdia de las ecuaciones diferenciales de tercer orden, (Euvrecs completes, a Partie III, Vol. 2, 174, Gauthier-Villars, Paris.
[7] Eskin, G., & Ralston, J. (2013). Gauge equivalence and the inverse spectral problem for the magnetic Schrodinger  operator on the torus. Russian Journal of Mathematical Physics, Vol. 20, No. 4, pp. 413-423. https://doi.org/10.1134/S1061920813040043
[8] Kamran, K., & Olver, P.J. (1989). Equivalence of differential operators, SIAM. J. Math. Anal. 20, 1172-1185. https://doi.org/10.1137/0520077
[9] M. KOBER, M. (2012). INTERSECTION OF YANG-MILLS THEORY WITH GAUGE DESCRIPTION OF GENERAL RELATIVITY. International Journal of Modern Physics A, Vol. 27, No. 20, 1250108. https://doi.org/10.1142/S0217751X12501084
[10] Merker, J. (2021). A Lie-Theoretic Construction of Cartan-Moser Chains. Journal of Lie Theory, 31(1), pp.029-062.
[11] Merker, J., & Nurowki, P. (2020). New Explicit Lorentzian Einstein-Weyl Structures in 3-Dimensions. SIGMA. 16, 056, 16 pages. https://doi.org/10.3842/SIGMA.2020.056
[12] Mergulhão, T.M., & Batista, C. (2020). On the equivalence of spacetimes, the Cartan-Karlhede algorithm, Revista Brasileira de Ensino de Física, vol. 42, e20200041. https://doi.org/10.1590/1806-9126-RBEF-2020-0041
[13] Nadjafikhah, M., & Bakhshandeh-Chamazkoti, R. (2013). Cartan equivalence problem for third-order differential operators, Turk J Math. 37: 949-958. https://doi.org/10.3906/mat-1205-31
[14] Olver, P.J. (1995). Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge 1995.
[15] Sato, H., & Yoshikawa, A.Y. (1998). Third order ordinary differential equations and Legendre connections, J. Math. Soc. Japan., 50: 993￿1013. https://doi.org/10.2969/jmsj/05040993
[16] Wulzer, A. (2014). An Equivalent Gauge and the Equivalence Theorem, Nuclear Physics B 885. 97-126. https://doi.org/10.1016/j.nuclphysb.2014.05.021