[1] Bakhshandeh, M., Bakhshandeh-Chamazkoti, R., & Nadjafikhah, M. (2024) Direct Equivalence Problem on Fifth-order Differential Operator. submitted.
[2] Bakhshandeh-Chamazkoti. R. (2015). The geometry of fourth-order differential operator, International Journal of Geometric Methods in Modern Physics, 12(05), p.1550055.
https://doi.org/10.1142/S0219887815500553
[4] Cartan, E. (1953). Les problmes d’equivalence, in Oeuvres completes, Part II, Vol. 2, Gauthiers-Villars, Paris, pp. 1311-1334.
[5] Cartan, E. (1953). Les sous-groupes des groupes continus de transformations, in Oeuvres completes, Part II, Vol. 2, Gauthiers-Villars, Paris, pp. 719-856.
[6] Cartan, E. (1955). La geometrdia de las ecuaciones diferenciales de tercer orden, (Euvrecs completes, a Partie III, Vol. 2, 174, Gauthier-Villars, Paris.
[7] Eskin, G., & Ralston, J. (2013). Gauge equivalence and the inverse spectral problem for the magnetic Schrodinger operator on the torus. Russian Journal of Mathematical Physics, Vol. 20, No. 4, pp. 413-423.
https://doi.org/10.1134/S1061920813040043
[9] M. KOBER, M. (2012). INTERSECTION OF YANG-MILLS THEORY WITH GAUGE DESCRIPTION OF GENERAL RELATIVITY. International Journal of Modern Physics A, Vol. 27, No. 20, 1250108.
https://doi.org/10.1142/S0217751X12501084
[10] Merker, J. (2021). A Lie-Theoretic Construction of Cartan-Moser Chains. Journal of Lie Theory, 31(1), pp.029-062.
[13] Nadjafikhah, M., & Bakhshandeh-Chamazkoti, R. (2013). Cartan equivalence problem for third-order differential operators, Turk J Math. 37: 949-958.
https://doi.org/10.3906/mat-1205-31
[14] Olver, P.J. (1995). Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge 1995.