Superderivations and Jordan superderivations of generalized quaternion algebras

Document Type : Special Issue: First Joint IIIMT-Algebra Forum Conference 2023

Author

Department of Mathematics and Statistics, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

Abstract

Let Hα,β be the generalized quaternion algebra over a unitary commutative ring. This paper aims to consider superderivations and Jordan superderivations of Hα,β and hence to obtain the superalgebra Ders(Hα,β) of superderivations and DerJs(Hα,β) of Jordan superderivations of Hα,β. It turns out that on generalized quaternion algebras, any superderivation is inner.  In particular, there exist Jordan superderivations that are not superderivations.

Keywords

Main Subjects


[1] Bresar, M. (1988). Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104, 1003{1006.
[2] Cheraghpour, H. and Ghosseiri, M.N. (2019). On superderivations and super-biderivations of trivial extensions and triangular matrix rings, Comm. Algebra. 47(4), 1662{1670. https://doi.org/10.1080/00927872.2018.1513016
[3] Fosner, A. and Fosner, M. (2009). 2-local superderivations on a superalgebra Mn(C), Monatsh. Math. 156, 307{311. https://doi.org/10.1007/s00605-008-0070-2
[4] Fosner, M. (2003). Jordan superderivations, Comm. Algebra. 31(9), 4533{4545. https://doi.org/10.1081/AGB-120022808
[5] Ghahramani, H., Ghosseiri, M.N. and Safari, S. (2017). Some questions concerning superderivations on Z2-graded rings, Aequationes Math. 91, 725{738. https://doi.org/10.1007/s00010-017-0480-0
[6] Ghahramani, H., Ghosseiri, M.N. and Heidari Zadeh, L. (2021). Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings. Iran J Sci Technol Trans Sci. 45, 305{308. https://doi.org/10.1007/s40995-020-01046-4
[7] Ghahramani, H., Ghosseiri, M.N. and Safari, S. (2021). On derivations, biderivations and superbiderivations of quaternion rings, Rend. Circ. Mat. Palermo, II. Ser 70, 765{674. https://doi.org/10.1007/s12215-020-00518-1
[8] Herstein, I.N. (1957). Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8, 1104{1110.
[9] Kizil, E. and Alagoz, Y. (2019). Derivations of generalized quaternion algebra. Turk. J. Math. 43(5), 2649{2657. https://doi.org/10.3906/mat-1905-86
[10] Lam,T.Y. (2005). Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, American Mathematical Society. https://doi.org/10.1090/gsm/067
[11] Li, F. and Wan, L. (2016). On P-Derivations and P-Jordan derivations of a ring, Ital. J. Pure Appl. Math. 36, 639{650.
[12] Zhang, J.H. and Yu, W.Y. (2006). Jordan derivations of triangular algebras, Linear Algebra Appl. 419, 251{255. https://doi.org/10.1016/j.laa.2006.04.015
Volume 13, Issue 5 - Serial Number 30
Special Issue: First Joint IIIMT-Algebra Forum Conference 2023
December 2024
Pages 1-9
  • Receive Date: 30 April 2024
  • Revise Date: 22 July 2024
  • Accept Date: 04 August 2024