[1] Afshar, B., & Ameri, R. (2023). Strongly Regular Relations Derived from Fundamental Relation. Journal of Algebraic Hyperstructures and Logical Algebras, 4(2), 123-130.
https://doi.org/10.61838/kman.jahla.4.2.8
[2] Ameri, R., & Rosenberg, I. G. (2009). Congruences of Multialgebras. J. Multiple Valued Log. Soft Comput., 15(5-6), 525-536.
[3] Ameri, R., & Nozari, T. (2010). A new characterization of fundamental relation on hyperrings. Int. J. Contemp. Math. Sci, 5(15), 721-738.
[5] Connes, A., & Consani, C. (2015). Universal thickening of the eld of real numbers. In Advances in the Theory of Numbers: Proceedings of the Thirteenth Conference of the Canadian Number Theory Association (pp. 11-74). Springer New York.
https://doi.org/10.1007/978-1-4939-3201-62
[6] Corsini, P. (1993). Prolegomena of hypergroup theory. Aviani editore.
[8] Davvaz, B., & Leoreanu-Fotea, V. (2007). Hyperring theory and applications (Vol. 347). International Academic Press, USA.
[10] Freni, D. (2002). A new characterization of the derived hypergroup via strongly regular equivalences. Communications in Algebra, 30(8), 3977-3989.
http://doi.org/10.1081/AGB-120005830
[12] Jun, J. U. (2015). Algebraic geometry over semi-structures and hyper-structures of characteristic one (Doctoral dissertation, Johns Hopkins University).
[14] Koskas, M., & Freni, D. (1970). Groupoids, semi-hypergroups and hypergroups. Journal de Mathematiques Pures et Appliquees, 155.
[15] Marty, F. (1934). Sur une generalization de la notion de groups. In 8th congress Math. Scandinaves, Stockholm,(1934).
[16] Vougiouklis, T. (1991, April). The fundamental relation in hyperrings. The general hyper eld. In Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scienti c (pp. 203-211).