On derivations of pseudo L-algebras

Document Type : Research Paper

Authors

Department of Mathematics, XI'an Polytechnic University, Shaanxi, China

Abstract

In this article, the focus is on the study of derivations on two types of algebraic structures: pseudo L-algebras and pseudo CKL-algebras. For pseudo L-algebras, the notions of left and right derivations are introduced. These derivations are characterized and equivalent characterizations are given. Additionally, the concepts of identity and ideal derivations are defined based on the notion of derivations in pseudo L-algebras. It is proven that any identity derivation is also an ideal derivation. However, an example is provided to demonstrate that not all ideal derivations are identity derivations. Moreover, it is shown that ideal left derivations in pseudo L-algebras are idempotent. The article also introduces the notion of fixed point sets in pseudo L-algebras and investigates some properties associated with them. Moving on to pseudo CKL-algebras, various properties of derivations in these structures are studied. The relationship between pseudo CKL-algebras and pseudo BCK-algebras is established, and it is proven that any pseudo CKL-algebra is also a pseudo BCK-algebra. Conversely, an example is provided to show that not all pseudo BCK-algebras are pseudo CKL-algebras. Additionally, it is demonstrated that the contractive derivation of a pseudo CKL-algebra is an identity derivation. We introduce the definition of a pre-ideal and also introduce the definition of a non-empty subset I in pseudo L-algebra, which is d-invariant, and prove that every pre-ideal I in pseudo CKL-algebra is d-invariant, where d is a derivation. Overall, the article explores derivations in pseudo L-algebras and pseudo CKL-algebras, providing definitions, characterizations, and examples to illustrate various properties and relationships between these algebraic structures.

Keywords

Main Subjects


[1] Prabpayak, C., & Leerawat, U. (2009). On derivations of BCC-algebras. Kasetsart Journal (Natural Science), 43(2), 398-401.
[2] Posner, E. (1957). Derivations in prime rings. Proceedings of American Mathematical Society, 8, 1093-1100.
[3] Georgescu, G., & Iorgulescu, A. (2001). Pseudo-BCK Algebras: An Extension of BCK Algebras. In Springer London (pp. 97-114). https://doi.org/10.1007/978-1-4471-0717-0_9
[4] Szasz, G. (1975). Derivations of lattices. Acta Scientiarum Mathematicarum, 37(1-2), 149-154.
[5] Yazarli, H. (2013). A note on derivations in MV-algebras. Miskolc Mathematical Notes, 1(1), 345-354. https://doi.org/10.1155/2013/939234
[6] Abujabal, H. A. S., & Alshehri, N. O. (2006). Some results on derivations of BCI-algebras. Coden Jnsmac, 42(1), 13-19.
[7] Abujabal, H. A., & Al-Shehri, N. O. (2007). On left derivations of BCI-algebras. Soochow Journal of Mathematics, 33(3), 435-444.
[8] Krenavek, J., & Kuhr, J. (2015). A note on derivations on basic algebras. Soft Computing, 19(1), 1765-1771. https://doi.org/10.1007/s00500-014-1586-0
[9] Rachunek, J., & Salounova, D. (2018). Derivations on algebras of a non-commutative generalization of the  Lukasiewicz logic. Fuzzy Sets and Systems, 333(1), 11-16. https://doi.org/10.1016/j.fss.2017.01.013
[10] Wang, J. T., He, P. F., & She, Y. H. (2023). Some results on derivations of MV-algebras. Applied Mathematics-A Journal of Chinese Universities, 38(1), 126-143. https://doi.org/10.1007/s11766-023-4054-8
[11] Kim, K. H., & Lee, S. M. (2014). On derivations of BE-algebras. Honam Mathematical Journal, 36(1), 167-178. https://doi.org/10.5831/HMJ.2014.36.1.167
[12] Ciungu, L. C. (2008). States on pseudo-BCK algebras. Mathematical Reports, 1(1), 17-36.
[13] Ferrari, L., & Tallos, P. (2001). On derivations of lattices. Pure Mathematics and Applications, 12(4), 365-382.
[14] Alshehri, N. O. (2010). Derivations of MV-algebras. International Journal of Mathematics and Mathematical Sciences, 2010(11), 932-937. https://doi.org/10.1155/2010/312027
[15] Alshehri, N. O., & Bawazeer, S. M. (2012). On derivations of BCC-algebras. International Journal of Algebra, 6(32), 1491-1498.
[16] He, P. F., Xin, X. L., & Zhan, J. M. (2016). On derivations and their  xed point sets in residuated lattices. Fuzzy Sets and Systems, 303(1), 97-113. https://doi.org/10.1016/j.fss.2016.01.006
[17] Ghorbani, S. H., Torkzadeh, L., & Motamed, S. (2013). ( ;)-Derivations and (    ;)-derivations on MV-algebras. Iranian Journal of Mathematical Sciences and Informatics, 8(1), 75-90.
[18] Rump, W. (2005). A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation. Advances in Mathematics, 193(1), 40-55. https://doi.org/10.1016/j.aim.2004.03.019
[19] Rump, W. (2008). L-algebras, self-similarity, and l-groups. Journal of Algebra, 320(6), 2328-2348. https://doi.org/10.1016/j.jalgebra.2008.05.033
[20] Rump, W. (2018). The L-algebra of Hurwitz primes. Journal of Number Theory, 190(3), 394-413. https://doi.org/10.1016/j.jnt.2018.03.004
[21] Rump, W. (2017). The structure group of a generalized orthomodular lattice. Springer Netherlands, 2017(1), 85-100. https://doi.org/10.1007/s11225-017-9726-z
[22] Rump, W., & Zhang, X. (2020). L-e ect Algebras. Studia Logica, 108(4), 725-750. https://doi.org/10.1007s11225-019-09873-2
[23] Xin, X. L., Yang, X. F., & Ma, Y. C. (2022). Pseudo L-algebras. Iranian Journal of Fuzzy Systems, 19(6), 61-73. https://doi.org/10.22111/IJFS.2022.7210
[24] Xin, X. L., Li, T. Y., & Lu, J. H. (2008). On derivations of lattices. Information Sciences, 178(2), 307-316. https://doi.org/10.1016/j.ins.2007.08.018
[25] Xin, X. L. (2012). The  xed set of a derivation in lattices. Fixed Point Theory and Applications, 218(1), 1-12. https://doi.org/10.1186/1687-1812-2012-218
[26] Wu, Y. L., Wang, J., & Yang, Y. C. (2019). Lattice-ordered e ect algebras and L-algebras. Fuzzy Sets and Systems, 369(15), 103-113. https://doi.org/10.1016/j.fss.2018.08.013
[27] Wu, Y., & Yang, Y. (2020). Orthomodular lattices as L-algebras. Soft Computing, 24(19), 14391-14400. https://doi.org/10.1007/s00500-020-05242-7
[28] Jun, Y. B., & Xin, X. L. (2004). On derivations of BCI-algebras. Elsevier Science Inc, 159(3-4), 167-176. https://doi.org/10.1016/j.ins.2003.03.001