Weighted differentiation composition operators on the QK(p,q) spaces and‎ their essential ‎norms‎

Document Type : Research Paper

Authors

1 Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran

2 Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran

Abstract

In this paper, firstly we obtain characterization for boundedness of the weighted differentiation composition operator  from QK(p,q) space into weighted Zygmund space. Then we give an estimation for the essential norm of such an operator on the mentioned spaces.  As an application, we present a characterization for the compactness of the above operator.

Keywords

Main Subjects


[1] Abbasi, E., & Vaezi, H. (2019). Generalized weighted composition operators from the Bloch-type spaces to the weighted Zygmund spaces, Filomat, 33(3), 981-992. https://doi.org/10.2298/FIL1903981A
[2] Aulaskari, R., & Lappan, P. (1994). Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications (Hong Kong, 1993), Pitman Res. Notes Math. Ser., vol. 305, Longman Sci. Tech., Harlow, pp. 136-146.
[3] Aulaskari, R., Xiao, J., & Zhao, R. (1995). On subspaces and subsets of BMOA and UBC. Analysis 15(2), 101-121. https://doi.org/10.1524/anly.1995.15.2.101
[4] Duren, P. (1973). Theory of Hp spaces, Academic Press, New York.
[5] Esmaeili, K., & Lindstrom, M. (2013). Weighted composition operators between Zygmund type spaces and their essential norms. Integr. Equ. Oper. Theory, 75, 473-490. doi: 10.1007/s00020-013-2038-4
[6] Essen, M., & Wulan, H. (2002). On analytic and meromorphic functions and spaces of QK-type. Illinois J. Math., 46(4), 1233-1258. DOI: 10.1215/ijm/1258138477
[7] Guo, J., & Liu, Y. (2016). Generalized integration operators from mixed-norm to Zygmund-type spaces. Bull. Malay. Math. Soc., 39, 1043-1057. doi.org/10.1007/s40840-015-0204-3
[8] Guo, Z. (2022). Stevic-Sharma operator from QK(p; q) space to Zygmund-type Space. Filomat, 36(19), 6805-6820. https://doi.org/10.2298/FIL2219805G
[9] Kotilainen, M. (2007). On composition operators in QK type spaces. J. Funct. Space Appl., 5, 103-122. https://doi.org/10.1155/2007/956392
[10] Li, S., & Stevic, S. (2007). Volterra-type operators on Zygmund spaces. J. Inequal. Appl., 2007, Article ID 32124. doi: 10.1155/2007/32124
[11] Li, S., & Stevic, S. (2008). Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl., 338, 1282-1295. https://doi.org/10.1016/j.jmaa.2007.06.013
[12] Li, S., & Stevic, S. (2008). Products of Volterra type operator and composition operator from H1 and Bloch spaces to the Zygmund space. J. Math. Anal. Appl., 345, 40-52. doi: 10.1016/j.jmaa.2008.03.063
[13] Manavi, A., Hassanlou, M., & Vaezi, H. (2023). Essential norm of generalized integral type operator from QK(p; q) to Zygmund spaces. Filomat, 37(16), 5273-5282. https://doi.org/10.2298/FIL2316273M
[14] Meng, X. (2008). Some sucient conditions for analytic functions to belong to QK;0(p; q) space. Abstr. Appl. Anal., 2008, Article ID 404636. https://doi.org/10.1155/2008/404636
[15] Pan, C. (2011). On an integral-type operator from QK(p; q) spaces to  -Bloch space. Filomat, 25, 163-173. doi: 10.2298/FIL1103163P
[16] Ren, Y. (2014). An integral-type operator from QK(p; q) spaces to Zygmund-type spaces. Appl. Math. Comput., 236, 27-32. doi: 10.1016/j.amc.2014.03.014
[17] Sanatpour, A. H., & Hassanlou, M. (2014). Essential norms of weighted composition operators between Zygmund-type spaces and Bloch-type spaces. Turk. J. Math., 38, 872-882. doi:10.3906/mat-1401-5
[18] Sanatpour, A. H., & Hassanlou, M. (2017). Essential norms of weighted di erentiation composition operators between Zygmund type spaces and Bloch type spaces. Filomat, 31(9), 2877-2889. doi: 10.2298/FIL1709877S
[19] Wulan H., & Wu, P. (2001). Characterizations of QT spaces. J. Math. Anal. Appl., 254(2), 484-497. https://doi.org/10.1006/jmaa.2000.7204
[20] Wulan H., & Zhou, J. (2006). QK type spaces of analytic functions. J. Funct. Spaces Appl., 4, 73-84. doi: 10.1155/2006/910813
[21] Xiao, J. (1994). Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann. Acad. Sci. Fenn. Ser. A I Math., 19(1), 35-46.
[22] Yang, W. (2009). Products of composition and di erentiation operators from QK(p; q) spaces to Bloch-type spaces. Abstr. Appl. Anal., 2009, Article ID 741920. doi:10.1155/2009/741920
[23] Zhao, R. (1996). On a general family of function spaces. Ann. Acad. Sci. Fenn. Math. Dissertationes, 105, 1{56.
[24] Zhu, K. (1993). Bloch type spaces of analytic functions. Rocky Mt. J. Math., 23, 1143-1177. http://www.jstor.org/stable/44237763
[25] Zhu, X. (2009). Generalized composition operators and Volterra composition operators on Bloch spaces in the unit ball. Complex Var. Elliptic Equ., 54(2), 95-102. https://doi.org/10.1080/17476930802669660
[26] Zhu, X. (2015). A new characterization of the generalized weighted composition operator from H1 into the Zygmund space. Math. Inequal. App., 18(3), 1135-1142. dx.doi.org/10.7153/mia-18-87
[27] Zhu, X. (2016).Weighted composition operators from weighted-type spaces to Zygmund-type spaces. Math. Inequal. Appl., 19(3), 1067-1087. dx.doi.org/10.7153/mia-19-79