[1] Abbasi, E., & Vaezi, H. (2019). Generalized weighted composition operators from the Bloch-type spaces to the weighted Zygmund spaces, Filomat, 33(3), 981-992.
https://doi.org/10.2298/FIL1903981A
[2] Aulaskari, R., & Lappan, P. (1994). Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications (Hong Kong, 1993), Pitman Res. Notes Math. Ser., vol. 305, Longman Sci. Tech., Harlow, pp. 136-146.
[4] Duren, P. (1973). Theory of Hp spaces, Academic Press, New York.
[5] Esmaeili, K., & Lindstrom, M. (2013). Weighted composition operators between Zygmund type spaces and their essential norms. Integr. Equ. Oper. Theory, 75, 473-490. doi: 10.1007/s00020-013-2038-4
[6] Essen, M., & Wulan, H. (2002). On analytic and meromorphic functions and spaces of QK-type. Illinois J. Math., 46(4), 1233-1258. DOI: 10.1215/ijm/1258138477
[7] Guo, J., & Liu, Y. (2016). Generalized integration operators from mixed-norm to Zygmund-type spaces. Bull. Malay. Math. Soc., 39, 1043-1057. doi.org/10.1007/s40840-015-0204-3
[10] Li, S., & Stevic, S. (2007). Volterra-type operators on Zygmund spaces. J. Inequal. Appl., 2007, Article ID 32124. doi: 10.1155/2007/32124
[12] Li, S., & Stevic, S. (2008). Products of Volterra type operator and composition operator from H1 and Bloch spaces to the Zygmund space. J. Math. Anal. Appl., 345, 40-52. doi: 10.1016/j.jmaa.2008.03.063
[13] Manavi, A., Hassanlou, M., & Vaezi, H. (2023). Essential norm of generalized integral type operator from QK(p; q) to Zygmund spaces. Filomat, 37(16), 5273-5282.
https://doi.org/10.2298/FIL2316273M
[14] Meng, X. (2008). Some sucient conditions for analytic functions to belong to QK;0(p; q) space. Abstr. Appl. Anal., 2008, Article ID 404636.
https://doi.org/10.1155/2008/404636
[15] Pan, C. (2011). On an integral-type operator from QK(p; q) spaces to -Bloch space. Filomat, 25, 163-173. doi: 10.2298/FIL1103163P
[16] Ren, Y. (2014). An integral-type operator from QK(p; q) spaces to Zygmund-type spaces. Appl. Math. Comput., 236, 27-32. doi: 10.1016/j.amc.2014.03.014
[17] Sanatpour, A. H., & Hassanlou, M. (2014). Essential norms of weighted composition operators between Zygmund-type spaces and Bloch-type spaces. Turk. J. Math., 38, 872-882. doi:10.3906/mat-1401-5
[18] Sanatpour, A. H., & Hassanlou, M. (2017). Essential norms of weighted di erentiation composition operators between Zygmund type spaces and Bloch type spaces. Filomat, 31(9), 2877-2889. doi: 10.2298/FIL1709877S
[20] Wulan H., & Zhou, J. (2006). QK type spaces of analytic functions. J. Funct. Spaces Appl., 4, 73-84. doi: 10.1155/2006/910813
[21] Xiao, J. (1994). Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann. Acad. Sci. Fenn. Ser. A I Math., 19(1), 35-46.
[22] Yang, W. (2009). Products of composition and di erentiation operators from QK(p; q) spaces to Bloch-type spaces. Abstr. Appl. Anal., 2009, Article ID 741920. doi:10.1155/2009/741920
[23] Zhao, R. (1996). On a general family of function spaces. Ann. Acad. Sci. Fenn. Math. Dissertationes, 105, 1{56.
[24] Zhu, K. (1993). Bloch type spaces of analytic functions. Rocky Mt. J. Math., 23, 1143-1177.
http://www.jstor.org/stable/44237763
[25] Zhu, X. (2009). Generalized composition operators and Volterra composition operators on Bloch spaces in the unit ball. Complex Var. Elliptic Equ., 54(2), 95-102.
https://doi.org/10.1080/17476930802669660
[26] Zhu, X. (2015). A new characterization of the generalized weighted composition operator from H1 into the Zygmund space. Math. Inequal. App., 18(3), 1135-1142. dx.doi.org/10.7153/mia-18-87
[27] Zhu, X. (2016).Weighted composition operators from weighted-type spaces to Zygmund-type spaces. Math. Inequal. Appl., 19(3), 1067-1087. dx.doi.org/10.7153/mia-19-79