[1] Ashbaugh M., (2002), The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile{Protter, and H C Yang, Proc. Indian Acad. Sci. (Math. Sci.) 112(1), 3-30.
https://doi.org/10.1007/BF02829638
[5] do Carmo M. P., Wang Q., Xia C., (2010), Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds, Annali di mathematica, 189, 643-660.
https://doi.org/10.1007/s10231-010-0129-2
[7] Harrell E. M., El Sou A., & Ilias A., (2009), Universal inequalities for the eigenvalues of Laplace and Schrodinger operator on submanifolds, Trans. Amer. Math. Soc., 361(5), 2337-2350.
https://doi.org/10.1090/S0002-9947-08-04780-6
[9] Hile G. N., Yeh R. Z., (1984), Inequalities for eigenvalues of the biharmonic operator, Paci c J. math., 112, 115-133.
[16] Yang H. C., (1991), An estimate of the di erence between consecutive eigenvalues, Preprint IC/91/60 of ICTP, Trieste.