[5] Berk, R. A. (2020). Statistical learning as a regression problem. In Statistical learning from a regression perspective (pp. 1{72). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-40189-4 1
[6] Cao, J., Zhou, T., Zhi, S., Lam, S., Ren, G., Zhang, Y., Wang, Y. Dong, Y., & Cai, J. (2024). Fuzzy inference system with interpretable fuzzy rules: Advancing explainable arti cial intelligence for disease diagnosis-a comprehensive review. Information Sciences, 662, 120212.
https://doi.org/10.1016/j.ins.2024.120212
[8] Chachi, J., Kazemifard, A., & Jalalvand, M. (2021). A multi-attribute assessment of fuzzy regression models. Iranian Journal of Fuzzy Systems, 18, 131-148.
https://doi.org/10.22111/ijfs.2021.6181
[9] Chachi, J., & Taheri, S. M. (2013). A uni ed approach to similarity measures between intuitionistic fuzzy sets. International Journal of Intelligent Systems, 28, 669-685.
https://doi.org/10.1002/int.21596
[12] Couso, I., Garrido, L., & Sanchez, L. (2013). Similarity and dissimilarity measures between fuzzy sets: a formal relational study. Information Sciences, 229, 122-141.
https://doi.org/10.1016/j.ins.2012.11.012
[13] Cox, J. A., Wu, Y., & Davies, A. M. A. (2024). Does animacy a ect visual statistical learning? revisiting the e ects of selective attention and animacy on visual statistical learning. Quarterly Journal of Experimental Psychology, 77, 492-510.
https://doi.org/10.1177/17470218231173883
[16] D'Urso, P., Chachi, J., Kazemifard, A., & De Giovanni, L. (2024). Owa-based multicriteria decision making based on fuzzy methods. Annals of Operations Research, 1-35.
https://doi.org/10.1007/s10479-024-05926-5
[17] Dvorak, A., Jayaram, B., & Stepnicka, M. (2021). Similarity-based reasoning from the perspective of extensionality. In 19th world congress of the inter-national fuzzy systems association (ifsa), 12th conference of the european society for fuzzy logic and technology (eusat), and 11th international summer school on aggregation operators (agop) (pp.
322-329).
https://doi.org/10.2991/asum.k.210827.043
[19] Fiedler, C., Herty, M., & Trimpe, S. (2024). On kernel-based statistical learning theory in the mean eld limit. Advances in Neural Information Processing Systems, 36, arXiv:2310.18074.
https://doi.org/10.48550/arXiv.2310.18074
[20] Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learning research: A critical review and possible new directions. Psychological Bulletin, 145(12), 1128.
https://doi.org/10.1037/bul0000210
[21] Gorgin, S., Karvandi, M. S., Moghari, S., Fallah, M. K., & Lee, J.-A. (2024). A hardware realization framework for fuzzy inference system optimization. Electronics, 13(4), 690.
https://doi.org/10.3390/electronics13040690
[23] Hesamian, G., & Chachi, J. (2017). On similarity measures for fuzzy sets with applications to pattern recognition, decision making, clustering, and approximate reasoning. Journal of Uncertain Systems, 11(1), 35-48.
https://www.academia.edu/7732486
[24] Hothorn, T. (2023). Cran task view: Machine learning & statistical learning. Comprehensive R Archive Network (CRAN), Version 2023-07-20. https://CRAN.R-project.org/view=MachineLearning
[25] Imam, M., Adam, S., Dev, S., & Nesa, N. (2024). Air quality monitoring using statistical learning models for sustainable environment. Intelligent Systems with Applications, 200333.
https://doi.org/10.1016/j.iswa.2024.200333
[26] Irani, J., Pise, N., & Phatak, M. (2016). Clustering techniques and the similarity measures used in clustering: A survey. International journal of computer applications, 134(7), 9-14.
https://doi.org/10.5120/ijca2016907841
[27] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Statistical learning. In An introduction to statistical learning: with applications in python (pp. 15-67). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-38747-0
[28] Kazemifard, A., & Chachi, J. (2022). Madm approach to analyse the performance of fuzzy regression models. Journal of Ambient Intelligence and Humanized Computing, 13, 4019-4031.
https://doi.org/10.1007/s12652-021-03394-4
[31] Li, F., & Shen, Q. (2024). Fuzzy rule-based inference: Advances and applications in reasoning with approximate knowledge interpolation. https://doi.org/10.1007/978-981-97-0491-0[32] MacDonell, S. G. (2011). The impact of
sampling and rule set size on generated fuzzy inference system predictive accuracy: analysis of a software engineering data set. In International conference on engineering applications of neural networks (pp. 360-369).
https://doi.org/10.1007/978-3-642-23960-1 43
[35] Mouzouris, G., & Mendel, J. (1997). Nonsingleton fuzzy logic systems: theory and application. IEEE Transactions on Fuzzy Systems, 5(1), 56-71.
https://doi.org/10.1109/91.554447
[36] Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., & Sugeno, M. (2019). Fuzzy control systems: Past, present and future. IEEE Computational Intelli-gence Magazine, 14(1), 56-68. https://doi.org/10.1109/MCI.2018.2881644[37] Ojha, V., Abraham, A., & Snasel, V. (2019). Heuristic design of fuzzy inference systems: A review of three decades of research. Engineering Applications of Arti cial Intelligence, 85, 845-864.
https://doi.org/10.1016/j.engappai.2019.08.010
[38] Pattanayak, R. M., Behera, H., & Panigrahi, S. (2021). A novel probabilistic intuitionistic fuzzy set based model for high order fuzzy time series forecasting. Engineering Applications of Arti cial Intelligence, 99, 104136.
https://doi.org/10.1016/j.engappai.2020.104136
[40] Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, 10(7), 3897-3904.
https://ssrn.com/abstract=4458723
[43] Utt, Z., Volya, D., & Mishra, P. (2024). Quantum measurement classi cation using statistical learning. ACM Transactions on Quantum Computing, 5, 1-16.
https://doi.org/10.1145/3644823
[45] Wagner, C., Pourabdollah, A., McCulloch, J., John, R., & Garibaldi, J. M. (2016). A similarity-based inference engine for non-singleton fuzzy logic systems. In 2016 ieee international conference on fuzzy systems (fuzz-ieee) (pp. 316-323).
https://doi.org/10.1109/FUZZ-IEEE.2016.7737703
[46] Wasantha, P. L. P., Ranjith, P. G., & Viete, D. R. (2012). Constitutive models describing the in uence of the geometry of partially-spanning joints on jointed rock mass strength: Regression and fuzzy logic analysis of experimental data. Expert Systems with Applications, 39(9), 7663-7672.
https://doi.org/10.1016/j.eswa.2012.01.025
[47] Welch, W. J. (1982). Algorithmic complexity: three np-hard problems in computational statistics. Journal of Statistical Computation and Simulation, 15, 17-25.
https://doi.org/10.1080/00949658208810560
[48] Xu, Y., & Zeevi, A. (2024). Towards optimal problem dependent generalization error bounds in statistical learning theory. Mathematics of Operations Research.
https://doi.org/10.1287/moor.2021.0076
[52] Zeng, W., Liu, Y., Cui, H., Ma, R., & Xu, Z. (2022). Interval possibilistic c-means algorithm and its application in image segmentation. Information Sciences, 612, 465-480.
https://doi.org/10.1016/j.ins.2022.08.082
[53] Zhang, T. (2023). Mathematical analysis of machine learning algorithms. Cambridge
University Press. https://doi.org/10.1017/9781009093057