[1] Agrawal, O. P. (2004). A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 38(1), 323-337.
[2] Agrawal, O. P. (2008). A formulation and numerical scheme for fractional optimal control problems. Journal of Vibration and Control, 14(8), 1291-1299.
[3] Almeida, R., Torres, D. F. M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul., 16(2011), 1490-1500.
[4] Badalyan, G. V. (1955). Generalization of Legendre polynomials and some of their applications. Akad. Nauk Armyan. SSR Izv. Fiz.-Mat. Estest. Tekhn. Nauk, 8, 1-28 and 9 (1956), 3-22 (Russian, Armenian summary).
[5] Borwein, P., Erdélyi, T., Zhang, J. (1994). Müntz systems and orthogonal Müntz-Legendre polynomials. Trans. Amer. Math. Soc., 342, 523-542.
[6] Debnath, L. (2003). Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci., 54, 3413-3442.
[7] Ejlali, N., Hosseini, S. M. (2017). A Pseudospectral Method for Fractional Optimal Control Problems. J. Optim. Theory Appl., 174, 83-107.
[8] Erfani, S., Babolian, E., Javadi, S. (2021). New fractional pseudospectral methods with accurate convergence rates for fractional differential equations. Electron. Trans. Numer. Anal., 54, 150-175.
[9] Esmaeili, S., Shamsia, M., Luchko, Y. (2011). Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl., 62, 918-929.
[10] Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., Huntington, G. T. (2010). A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46, 1843-1851.
[11] Gautschi, W. (1982). On generating orthogonal polynomials. SIAM J. SCI. STAT. COMPUT., 3, 289-317.
[12] Heydari, M. H., Hooshmandasl, M. R., Maalek Ghaini, F. M., Cattani, C. (2016). Wavelets method for solving fractional optimal control problems. Appl. Math. Comput., 286, 139-154.
[13] Heydari, M. H., Tavakoli, R., Razzaghi, M. (2022). Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative. Int. J. Syst. Sci., 53, 2694-2708.
[14] Jarad, F., Abdeljawad, T., Baleanu, D. (2010). Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn., 62, 609-614.
[15] Karami, Sh., Fakharzadeh Jahromi, A., Heydari, M. H. (2024). A cardinal-based numerical method for fractional optimal control problems with Caputo–Katugampola fractional derivative in a large domain. Int. J. Syst. Sci., 55, 1719-1736.
[16] Ke, X., Chen, Y., Wei, Y. (2015). Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput., 251, 475-488.
[17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, Elsevier Science B. V., Amsterdam.
[18] Liu, F., Anh, V., Turner, I. (2004). Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math., 166, 209-219.
[19] Lotfi, A., Dehghan, M., Yousefi, S. A. (2011). A numerical technique for solving fractional optimal control problems. Comput. Math. Appl., 62, 1055-1067.
[20] Lotfi, A., Yousefi, S. A., Dehghan, M. (2013). Numerical solution of a class of fractional optimal control problems via Legendre orthonormal basis combined with the operational matrix and Gauss quadrature rule. J. Comput. Appl. Math., 250, 143-160.
[21] Maleki, M., Hashim, I., Abbasbandy, S., Alsaedi, A. (2015). Direct Solution of a Type of Constrained Fractional Variational Problems Via an Adaptive Pseudospectral Method. J. Comput. Appl. Math., 283, 41-57.
[22] Milovanović, G. V. (1999). Müntz orthogonal polynomials and their numerical evaluation. In: Applications and Computation of Orthogonal Polynomials, Internat. Ser. Numer. Math., 131, 179-194.
[23] Mokhtary, P., Ghoreishi, F., Srivastava, H. M. (2016). The Müntz-Legendre Tau Method for Fractional Differential Equations. Appl. Math. Model., 40, 671-684.
[24] Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1st ed.). San Diego, USA: Academic Press.
[25] Pooseh, S., Almeida, R., Torres, D. F. M. (2014). Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim., 10, 363-381.
[26] Salati, A. B., Shamsi, M., Torres, D. F. M. (2018). Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul., doi: 10.1016/j.cnsns.2018.05.011.
[27] Shen, J., Tang, T., Wang, L. L. (2011). Spectral Methods: Algorithms, Analysis and Applications, Volume 41 of Series in Computational Mathematics, Springer-Verlag, Berlin, Heidelberg.
[28] Shen, J., Wang, Y. (2016). Müntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems. SIAM J. SCI. COMPUT., 38, 2357-2381.
[29] Tang, X., Liu, Zh., Wang, X. (2015). Integral fractional pseudospectral methods for solving fractional optimal control problems. Automatica, 62, 304-311.
[30] Tarasov, V. E. (2011). Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media (1st ed.). Berlin, Germany: Springer-Verlag.
[31] Taslakyan, A. K. (1984). Some properties of Legendre quasipolynomials with respect to a Müntz system. Mathematics, Erevan Univ., Erevan, 2, 179-189 (Russian, Armenian summary).
[32] Tohidi, E., Saberi Nik, H. (2015). A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model., 39, 455-465.
[33] Vali, M. A., Valian, F., Ordokhani, Y. (2020). Numerical solution of fractional optimal control problems with inequality constraint using the fractional-order Bernoulli wavelet functions. IJST-Trans. Electr. Eng., 44(4), 1513-1528.
[34] West, B. J., Bologna, M., Grigolini, P. (2003). Physics of Fractal Operators. Springer-Verlag, NY.
[35] Xu, X., Xiong, L., Zhou, F. (2021). Solving fractional optimal control problems with inequality constraints by a new kind of Chebyshev wavelets method. J. Comput. Sci., 54, 101412.
[36] Yousefi, S. A., Nemati, A. (2016). A numerical method for solving fractional optimal control problems using Ritz method. J. Comput. Nonlin. Dyn., 11, 051015.