Numerical solutions for fractional optimal control problems using Mü‎‎‎‎‎‎‎ntz-Legendre polynomials

Document Type : Research Paper

Authors

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar Iran

Abstract

This study introduces a novel method using the Müntz-Legendre polynomials for numerically solving fractional optimal control problems. Utilizing the unique properties of Müntz-Legendre polynomials when dealing with fractional operators, these polynomials are used to approximate the state and control variables in the considered problems. Consequently, the fractional optimal control problem is transformed into a nonlinear programming problem through collocation points, yielding unknown coefficients. To achieve this, stable and efficient methods for calculating the fractional integral and derivative operators of Müntz-Legendre functions based on three-term recurrence formulas and Jacobi-Gauss quadrature rules are presented. A thorough convergence analysis, along with error estimates, is provided. Several numerical examples are included to demonstrate the efficiency and accuracy of the proposed method.

Keywords

Main Subjects


[1] Agrawal, O. P. (2004). A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 38(1), 323-337.
[2] Agrawal, O. P. (2008). A formulation and numerical scheme for fractional optimal control problems. Journal of Vibration and Control, 14(8), 1291-1299.
[3] Almeida, R., Torres, D. F. M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul., 16(2011), 1490-1500.
[4] Badalyan, G. V. (1955). Generalization of Legendre polynomials and some of their applications. Akad. Nauk Armyan. SSR Izv. Fiz.-Mat. Estest. Tekhn. Nauk, 8, 1-28 and 9 (1956), 3-22 (Russian, Armenian summary).
[5] Borwein, P., Erdélyi, T., Zhang, J. (1994). Müntz systems and orthogonal Müntz-Legendre polynomials. Trans. Amer. Math. Soc., 342, 523-542.
[6] Debnath, L. (2003). Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci., 54, 3413-3442.
[7] Ejlali, N., Hosseini, S. M. (2017). A Pseudospectral Method for Fractional Optimal Control Problems. J. Optim. Theory Appl., 174, 83-107.
[8] Erfani, S., Babolian, E., Javadi, S. (2021). New fractional pseudospectral methods with accurate convergence rates for fractional differential equations. Electron. Trans. Numer. Anal., 54, 150-175.
[9] Esmaeili, S., Shamsia, M., Luchko, Y. (2011). Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl., 62, 918-929.
[10] Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., Huntington, G. T. (2010). A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46, 1843-1851.
[11] Gautschi, W. (1982). On generating orthogonal polynomials. SIAM J. SCI. STAT. COMPUT., 3, 289-317.
[12] Heydari, M. H., Hooshmandasl, M. R., Maalek Ghaini, F. M., Cattani, C. (2016). Wavelets method for solving fractional optimal control problems. Appl. Math. Comput., 286, 139-154.
[13] Heydari, M. H., Tavakoli, R., Razzaghi, M. (2022). Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative. Int. J. Syst. Sci., 53, 2694-2708.
[14] Jarad, F., Abdeljawad, T., Baleanu, D. (2010). Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn., 62, 609-614.
[15] Karami, Sh., Fakharzadeh Jahromi, A., Heydari, M. H. (2024). A cardinal-based numerical method for fractional optimal control problems with Caputo–Katugampola fractional derivative in a large domain. Int. J. Syst. Sci., 55, 1719-1736.
[16] Ke, X., Chen, Y., Wei, Y. (2015). Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput., 251, 475-488.
[17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, Elsevier Science B. V., Amsterdam.
[18] Liu, F., Anh, V., Turner, I. (2004). Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math., 166, 209-219.
[19] Lotfi, A., Dehghan, M., Yousefi, S. A. (2011). A numerical technique for solving fractional optimal control problems. Comput. Math. Appl., 62, 1055-1067.
[20] Lotfi, A., Yousefi, S. A., Dehghan, M. (2013). Numerical solution of a class of fractional optimal control problems via Legendre orthonormal basis combined with the operational matrix and Gauss quadrature rule. J. Comput. Appl. Math., 250, 143-160.
[21] Maleki, M., Hashim, I., Abbasbandy, S., Alsaedi, A. (2015). Direct Solution of a Type of Constrained Fractional Variational Problems Via an Adaptive Pseudospectral Method. J. Comput. Appl. Math., 283, 41-57.
[22] Milovanović, G. V. (1999). Müntz orthogonal polynomials and their numerical evaluation. In: Applications and Computation of Orthogonal Polynomials, Internat. Ser. Numer. Math., 131, 179-194.
[23] Mokhtary, P., Ghoreishi, F., Srivastava, H. M. (2016). The Müntz-Legendre Tau Method for Fractional Differential Equations. Appl. Math. Model., 40, 671-684.
[24] Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1st ed.). San Diego, USA: Academic Press.

[25] Pooseh, S., Almeida, R., Torres, D. F. M. (2014). Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim., 10, 363-381.
[26] Salati, A. B., Shamsi, M., Torres, D. F. M. (2018). Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul., doi: 10.1016/j.cnsns.2018.05.011.
[27] Shen, J., Tang, T., Wang, L. L. (2011). Spectral Methods: Algorithms, Analysis and Applications, Volume 41 of Series in Computational Mathematics, Springer-Verlag, Berlin, Heidelberg.
[28] Shen, J., Wang, Y. (2016). Müntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems. SIAM J. SCI. COMPUT., 38, 2357-2381.
[29] Tang, X., Liu, Zh., Wang, X. (2015). Integral fractional pseudospectral methods for solving fractional optimal control problems. Automatica, 62, 304-311.
[30] Tarasov, V. E. (2011). Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media (1st ed.). Berlin, Germany: Springer-Verlag.
[31] Taslakyan, A. K. (1984). Some properties of Legendre quasipolynomials with respect to a Müntz system. Mathematics, Erevan Univ., Erevan, 2, 179-189 (Russian, Armenian summary).
[32] Tohidi, E., Saberi Nik, H. (2015). A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model., 39, 455-465.
[33] Vali, M. A., Valian, F., Ordokhani, Y. (2020). Numerical solution of fractional optimal control problems with inequality constraint using the fractional-order Bernoulli wavelet functions. IJST-Trans. Electr. Eng., 44(4), 1513-1528.
[34] West, B. J., Bologna, M., Grigolini, P. (2003). Physics of Fractal Operators. Springer-Verlag, NY.
[35] Xu, X., Xiong, L., Zhou, F. (2021). Solving fractional optimal control problems with inequality constraints by a new kind of Chebyshev wavelets method. J. Comput. Sci., 54, 101412.
[36] Yousefi, S. A., Nemati, A. (2016). A numerical method for solving fractional optimal control problems using Ritz method. J. Comput. Nonlin. Dyn., 11, 051015.