[1] Barry, M., Diop, P. C. (2010). Some properties related to commutative weakly FGI-rings. JP Journal of algebra, number theory and application. 19(2), 141-153.
[2] El Moussaouy, A. (2025). Jacobson monform modules. Journal of Algebraic Systems 12(2), 372-390. DOI:10.22044/JAS.2023.12495.1668
[3] El Moussaouy, A., Moniri Hamzekolaee, A. R., Ziane, M. (2022). Jacobson Ho an modules. Algebra and Discrete Mathematics 33(1), 116-127. DOI:10.12958/adm1842
[4] El Moussaouy, A., Moniri Hamzekolaee, A. R., Khoramdel, M., Ziane, M. (2022). Weak Hopfcity and singular modules.Ann Univ Ferrara 68(1), 69-78. DOI: 10.1007/s11565-021-00383-5.
[5] El Moussaouy, A., Ziane, M. (2020). Modules in which every surjective endomorphism has a -small kernel. Ann Univ Ferrara 66, 325-337. DOI: 10.1007/s11565-020-00347-1
[6] El Moussaouy, A., Ziane, M. (2022). Notes on generalizations of Hop an and co-Hop an modules. Jordan Journal of Mathematics and Statistics 15(1), 43-54. Doi :
https://doi.org/10.47013/15.1.4
[7] El Moussaouy, A., Ziane, M. (2024). Notes On T-Hopfcity of modules. International Journal of Mathematics and Computer Sciences 19(2), 307-310.
[11] Inaam Hadi M. A., Marhoon K. H. (2014). Small monoform modules. Ibn Al-Haitham Journal for pure and applied science. 27(2), 229-240.
[13] Ozcan, A. C. (1998). Some characterizations of V-modules and rings, Vietnam Jomnal of Mathematics. 26, 253-258.
[14] Rodrigues, V. S., Santana, A. A. (2009). A note on a problem due to Zelmanowitz, Algebra Discrete Math. 3, 85-93.
[15] Smith, P. F. (2006). Compressible and related modules, Abelian groups, rings, modules and homological algebra, Lect. Notes Pure Appl. Math. 249, 295-313.
[16] Talebi, Y., Moniri Hamzekolaee, A. R., Hosseinpour, M., Harmanci, A. Ungor, B. (2019). Rings for which every cosingular module is projective, Hacet. J. Math. Stat. 48(4), 973{984. DOI : 10.15672/HJMS.2018.586
[17] Wasan, K., Enas, M. K. (2018). On a Generalization of small submodules. Sci.Int.(Lahore), 30(3), 359-365.