Investigating modules with partial endomorphisms having μ-small kernels

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Sciences, University of Mohammed First, Oujda, Morocco

2 Department of Mathematics, University of Mazandaran, Babolsar, Iran

Abstract

In this paper, we introduce and study the concept of generalized monoform modules ($G-M$ modules, for short) which is a proper generalization of that of monoform modules. We present some of their examples, properties and characterizations. It is shown that over a commutative ring $R$, the properties monoform, small monoform, $G-M$, compressible, uniform and weakly co-Hopfian are all equivalent. Moreover, we demonstrate that a ring $R$ is an injective semisimple ring iff any $R$-module is $G-M$. Further, we prove a similar theorem to Hilbert's basis theorem for monoform, small monoform and $G-M$ modules.

Keywords

Main Subjects


[1] Barry, M., Diop, P. C. (2010). Some properties related to commutative weakly FGI-rings. JP Journal of algebra, number theory and application. 19(2), 141-153.
[2] El Moussaouy, A. (2025). Jacobson monform modules. Journal of Algebraic Systems 12(2), 372-390. DOI:10.22044/JAS.2023.12495.1668
[3] El Moussaouy, A., Moniri Hamzekolaee, A. R., Ziane, M. (2022). Jacobson Ho an modules. Algebra and Discrete Mathematics 33(1), 116-127. DOI:10.12958/adm1842
[4] El Moussaouy, A., Moniri Hamzekolaee, A. R., Khoramdel, M., Ziane, M. (2022). Weak Hopfcity and singular modules.Ann Univ Ferrara 68(1), 69-78. DOI: 10.1007/s11565-021-00383-5.
[5] El Moussaouy, A., Ziane, M. (2020). Modules in which every surjective endomorphism has a -small kernel. Ann Univ Ferrara 66, 325-337. DOI: 10.1007/s11565-020-00347-1
[6] El Moussaouy, A., Ziane, M. (2022). Notes on generalizations of Hop an and co-Hop an modules. Jordan Journal of Mathematics and Statistics 15(1), 43-54. Doi : https://doi.org/10.47013/15.1.4
[7] El Moussaouy, A., Ziane, M. (2024). Notes On T-Hopfcity of modules. International Journal of Mathematics and Computer Sciences 19(2), 307-310.
[8] Gang, Y., Zhong-kui, L. (2010). Notes on Generalized Hop an and Weakly co-Hop an Modules. Comm. Algebra. 38, 3556-3566. https://doi.org/10.1080/00927872.2010.488666
[9] Goldie, A.W. (1958). The structure of prime rings under ascending chain conditions. Proc. London Math. Soc. 8(4), 589{608. https://doi.org/10.1112/plms/s3-8.4.589
[10] Haghany, A., Vedadi, M.R. (2001). Modules whose injective endomorphisms are essential. J. Algebra 243(2), 765-779.  https://doi.org/10.1006/jabr.2001.8851
[11] Inaam Hadi M. A., Marhoon K. H. (2014). Small monoform modules. Ibn Al-Haitham Journal for pure and applied science. 27(2), 229-240.
[12] Lam, T. Y. (1999). Lectures on Modules and Rings, Springer-Verlag New York. https://doi.org/10.1007/978-1-4612-0525-8
[13] Ozcan, A. C. (1998). Some characterizations of V-modules and rings, Vietnam Jomnal of Mathematics. 26, 253-258.
[14] Rodrigues, V. S., Santana, A. A. (2009). A note on a problem due to Zelmanowitz, Algebra Discrete Math. 3, 85-93.
[15] Smith, P. F. (2006). Compressible and related modules, Abelian groups, rings, modules and homological algebra, Lect. Notes Pure Appl. Math. 249, 295-313.
[16] Talebi, Y., Moniri Hamzekolaee, A. R., Hosseinpour, M., Harmanci, A. Ungor, B. (2019). Rings for which every cosingular module is projective, Hacet. J. Math. Stat. 48(4), 973{984. DOI : 10.15672/HJMS.2018.586
[17] Wasan, K., Enas, M. K. (2018). On a Generalization of small submodules. Sci.Int.(Lahore), 30(3), 359-365.
[18] Zelmanowitze, J.M. (1986). Representation of Rings With Faithful Polyform Modules, Comm. Algebra, 14(6), 1141-1169. https://doi.org/10.1080/00927878608823357