[1] Alghamdi, M. & Karapinar, E.(2013). G- - Contractive type mappings in G-metric spaces. The Journal of Applied Analysis and Computation, 11, 101{112. http://www.journalo nequalitiesandapplications.com/content/2013/1/70
[2] Aydi, H., Chen, C. M. & Karapnar, E. (2019). Interpolative Ciric-Reich-Rus type contractions via the Branciari distance. Mathematics, 7(1), 84.
https://doi.org/10.3390/math7010084
[3] Banach, S (1922). Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundamenta mathematicae 3, 133-181.
https://doi.org/10.4064/fm-3-1-133-181
[4] Berinde, V. Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare (2002). Berinde, V. and Takens, F. (2007). Iterative approximation of xed points (Vol. 1912, pp. xvi+-322). Berlin: Springer.
https://doi.org/10.1007/978-3-540-72234-2
[5] Branciari, A. (2000). A xed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen, 57(1-2), 31-37.
[6] Hammad, H. A. & De la Sen, M. (2020). Fixed-point results for a generalized almost (s; q)-Jaggi F-Contraction-Type on b-metric-like spaces. Mathematics, 8(1), 63.
https://doi.org/10.3390/math8010063
[7] Jaggi, D.S. (1977). Some unique xed point theorems. Indian Jounal of Pure and Applied Mathematics. 8, 223{230.
[11] Karapinar, E. (2018). Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Application, 2(2), 85-87.
https://doi.org/10.31197/atnaa.431135
[14] Liu, X., Chang, S., Xiao, Y. & Zhao, L. (2016). Existence of xed points for -type contraction and -type Suzuki contraction in complete metric spaces. Fixed Point Theory and Applications. DOI 10.1186/s13663-016-0496-5
[15] Mukheimer, A., Gnanaprakasam, A. J., Haq, A. U., Prakasam, S. K., Mani, G. & Baloch, I. A. (2022). Solving an integral equation via orthogonal Branciari metric spaces. Journal of Function Spaces, 2022.
https://doi.org/10.1155/2022/7251823
[16] Mitrovic, Z. D., Aydi, H., Noorani, M. S. M. & Qawaqneh, H. (2019). The weight inequalities on Reich type theorem in b-metric spaces. Journal of Mathematics and computer Science, 19, 51-57.
https://doi.org/10.22436/jmcs.019.01.07
[18] Oloche, O & Mohammed, S. S. (2023). A survey on -contractions and xed point theorems. Mathematical Analysis and its Contemporary Applications. DOI:10.30495/maca.2023.2005470.1079
[19] Parvaneh, V., Golkarmanesh,F., Hussain, N. & Salimi, P. (2016). New xed point theorems for -H-contractions in ordered metric spaces. Journal of Fixed point Theory and applications. DIO:10.1007/s11784-016-0330-z.
[21] Qawaqneh, H., Noorani, M. S. M., Shatanawi, W. & Alsamir, H. (2017). Common xed points for pairs of triangular -admissible mappings. Journal of Nonlinear Science and Applications, 10, 6192-6204.
https://doi.org/10.22436/jnsa.010.12.06
[24] Shagari, M. S., Oloche, P. and Noorwali, M. (2023). Solutions of Mixed Integral Equa-tions via Hybrid Contractions. Advances in the Theory of Nonlinear Analysis and its Application, 7(5), 165-182.
https://doi.org/10.17762/atnaa.v7.i5.333
[25] Yahaya, S., Shagari, M. S. & Ali, T. A. (2023). Multivalued hybrid contraction that involves Jaggi and Pata-type inequalities. Mathematical Foundations of Computing,doi:10.3934/mfc.2023045.
[26] Yesilkaya, S. S. (2021). On interpolative Hardy-Rogers contractive of Suzuki type mappings. Topological Algebra and its Applications, 9(1), 13-19.https://doi.org/10.1515/taa-2020-0102
[27] Zheng, D., Cai, Z. & Wang, P. New xed point theorems for - contraction in complete metric spaces. Journal of Nonlinear Sciences and Applications, vol. 10, no. 5, pp. 2662{2670, 2017.
https://doi.org/10.22436/jnsa.010.05.32
[28] Younis, M., Singh, D., Radenovic, S. & Imdad, M. (2020). Convergence theorems for generalized contractions and applications. Filomat, 34(3), 945-964.https://doi.org/10.2298/ l2003945y