A study of new fixed point results via hybrid contractions

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Abstract

The available literature shows that the ideas of admissible mappings and that of Suzuki-type contractions on metric spaces have been well-investigated. However, a hybrid version of these results in connection with $\theta$-contraction has not been adequately examined. On this basis therefore, the aim of this paper is to introduce a new concept under the name an admissible Jaggi-Suzuki-type hybrid ($\theta$-$\phi$)-contraction and to study new conditions for the existence of fixed point for this class of contractions on generalized or rectangular metric space. Applications and examples are provided to support the assumptions of our  presented theorems. The results established herein extend some existing ideas in the corresponding literature. A few of these special cases are highlighted and discussed as corollaries.

Keywords

Main Subjects


[1] Alghamdi, M. & Karapinar, E.(2013). G- -  Contractive type mappings in G-metric spaces. The Journal of Applied Analysis and Computation, 11, 101{112. http://www.journalo nequalitiesandapplications.com/content/2013/1/70
[2] Aydi, H., Chen, C. M. & Karapnar, E. (2019). Interpolative Ciric-Reich-Rus type contractions via the Branciari distance. Mathematics, 7(1), 84. https://doi.org/10.3390/math7010084
[3] Banach, S (1922). Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundamenta mathematicae 3, 133-181. https://doi.org/10.4064/fm-3-1-133-181
[4] Berinde, V. Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare (2002). Berinde, V. and Takens, F. (2007). Iterative approximation of  xed points (Vol. 1912, pp. xvi+-322). Berlin: Springer. https://doi.org/10.1007/978-3-540-72234-2
[5] Branciari, A. (2000). A  xed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen, 57(1-2), 31-37.
[6] Hammad, H. A. & De la Sen, M. (2020). Fixed-point results for a generalized almost (s; q)-Jaggi F-Contraction-Type on b-metric-like spaces. Mathematics, 8(1), 63. https://doi.org/10.3390/math8010063
[7] Jaggi, D.S. (1977). Some unique  xed point theorems. Indian Jounal of Pure and Applied Mathematics. 8, 223{230.
[8] Jleli, M. & Samet, B. A new generalization of the Banach contraction principle. Journal of Inequalities and Application. 8 pages. https://doi.org/10.1186/1029-242x-2014-38
[9] Kannan, R. (1969). Some results on  xed points|II. The American Mathematical Monthly, 76(4), 405-408. https://doi.org/10.2307/2316437
[10] Karapnar, E. (2022). A survey on interpolative and hybrid contractions. Mathematical Analysis in Interdisciplinary Research, 431-475. https://doi.org/10.1007/978-3-030-84721-020
[11] Karapinar, E. (2018). Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Application, 2(2), 85-87. https://doi.org/10.31197/atnaa.431135
[12] Karapinar, E. & Fulga A. A Hybrid contraction that involves Jaggi type. Symmetry 2019, 11, 715; DIO:10.3390/sym11050715. https://doi.org/10.3390/sym11050715
[13] Karapnar, E. & Fulga, A. (2019). An admissible hybrid contraction with an Ulam type stability. Demonstratio Mathematica, 52(1), 428-436. https://doi.org/10.1515/dema-2019-0037
[14] Liu, X., Chang, S., Xiao, Y. & Zhao, L. (2016). Existence of  xed points for -type contraction and -type Suzuki contraction in complete metric spaces. Fixed Point Theory and Applications. DOI 10.1186/s13663-016-0496-5
[15] Mukheimer, A., Gnanaprakasam, A. J., Haq, A. U., Prakasam, S. K., Mani, G. & Baloch, I. A. (2022). Solving an integral equation via orthogonal Branciari metric spaces. Journal of Function Spaces, 2022. https://doi.org/10.1155/2022/7251823
[16] Mitrovic, Z. D., Aydi, H., Noorani, M. S. M. & Qawaqneh, H. (2019). The weight inequalities on Reich type theorem in b-metric spaces. Journal of Mathematics and computer Science, 19, 51-57. https://doi.org/10.22436/jmcs.019.01.07
[17] Noorwali, M.and Yesilkaya, S. S. (2021). On Jaggi-Suzuki-type hybrid contraction mappings. Journal of Function Spaces, 2021, 1-7. https://doi.org/10.1155/2021/6721296
[18] Oloche, O & Mohammed, S. S. (2023). A survey on -contractions and  xed point theorems. Mathematical Analysis and its Contemporary Applications. DOI:10.30495/maca.2023.2005470.1079
[19] Parvaneh, V., Golkarmanesh,F., Hussain, N. & Salimi, P. (2016). New  xed point theorems for  -H-contractions in ordered metric spaces. Journal of Fixed point Theory and applications. DIO:10.1007/s11784-016-0330-z.
[20] Popescu, O. (2014). Some New Fixed Point Theorems for  -Geraghty contraction type Maps in metric spaces. Fixed Point Theory and Applications, 2014(1), 190. https://doi.org/10.1186/1687-1812-2014-190
[21] Qawaqneh, H., Noorani, M. S. M., Shatanawi, W. & Alsamir, H. (2017). Common  xed points for pairs of triangular  -admissible mappings. Journal of Nonlinear Science and Applications, 10, 6192-6204. https://doi.org/10.22436/jnsa.010.12.06
[22] Samet, B., Vetro, C. & Vetro, P. (2012). Fixed point theorems for  --contractive type mappings. Nonlinear Analysis, vol 75, 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
[23] Secelean, N. A. (2013). Iterated function systems consisting of F-contractions. Fixed Point Theory and Applications, 2013(1), 1-13. https://doi.org/10.1186/1687-1812-2013-277
[24] Shagari, M. S., Oloche, P. and Noorwali, M. (2023). Solutions of Mixed Integral Equa-tions via Hybrid Contractions. Advances in the Theory of Nonlinear Analysis and its Application, 7(5), 165-182. https://doi.org/10.17762/atnaa.v7.i5.333
[25] Yahaya, S., Shagari, M. S. & Ali, T. A. (2023). Multivalued hybrid contraction that involves Jaggi and Pata-type inequalities. Mathematical Foundations of Computing,doi:10.3934/mfc.2023045.
[26] Yesilkaya, S. S. (2021). On interpolative Hardy-Rogers contractive of Suzuki type mappings. Topological Algebra and its Applications, 9(1), 13-19.https://doi.org/10.1515/taa-2020-0102
[27] Zheng, D., Cai, Z. & Wang, P. New  xed point theorems for - contraction in complete metric spaces. Journal of Nonlinear Sciences and Applications, vol. 10, no. 5, pp. 2662{2670, 2017. https://doi.org/10.22436/jnsa.010.05.32
[28] Younis, M., Singh, D., Radenovic, S. & Imdad, M. (2020). Convergence theorems for generalized contractions and applications. Filomat, 34(3), 945-964.https://doi.org/10.2298/ l2003945y