The small condition for modules with Noetherian dimension

Document Type : Research Paper

Authors

1 Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

A module $M$ with Noetherian dimension is said to satisfy the small condition, if for any small submodule $S$ of $M$ the Noetherian dimension of $S$ is strictly less than the Noetherian dimension of $M$. For an Artinian  module $M$, this is equivalent to that $M$ is semisimple. In this article, we introduce  and study this concept and observe some basic facts for modules with this condition. As a main result, it is shown that if $M$ is a  module with  finite hollow dimension which satisfies the  small condition, then $\alpha \leq n-dim\, M\leq \alpha+1$, where  $\alpha=\sup\{ n-dim\,S: S\ll M\}$. Furthermore, if $M$ is a  module with Krull dimension and finite hollow dimension, then $\alpha \leq k-dim\, M\leq \alpha+1$, where  $\alpha=\sup\{ k-dim\,S: S\ll M\}$.  Also, we study the projective cover of modules satisfying the small condition or with finite hollow dimension

Keywords

Main Subjects


[1] Anderson, F.W., & Fuller, K.R. (1992). Rings and categories of modules. Grad. Texts Math., 13, Springer, Berlin. https://doi.org/10.1007/978-1-4612-4418-9
[2] Bland, P.E. (2011). Rings and their modules. Walter de Gruyter. https://doi.org/10.1515/9783110250237
[3] Boyle, A.K. (1978). The large condition for rings with Krull dimension. Proceedings of the American Mathematical Society, 72(1), 27-32. https://doi.org/10.2307/2042526
[4] Boyle, A.K., & Feller, E.H. (1979). Semicritical modules and k-primitive rings. In: Faith, C., Wiegand, S. (eds) Module Theory. Lecture Notes in Mathematics, vol 700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0063460
[5] Goodearl, K.R., & War eld, R.B. (2004). An introduction to noncommutative Noetherian rings. Cambridge university press. https://doi.org/10.1017/CBO978051184169
[6] Gordon, R., & Robson, J.C. (1973). Krull dimension. Mem. Amer. Math. Soc., 133.
[7] Grzeszczuk, P., & Puczylowski, E.R. (1984). On Goldie and dual Goldie dimension. J. Pure Appl. Algebra, 31(1-3), 47-54. https://doi.org/10.1016/0022-4049(84)90075-6
[8] Javdannezhad, S.M., & Shirali, N. (2018). The Krull dimension of certain semiprime modules versus their  -shortness. Mediterr. J. Math., 15, 116. https://doi.org/10.1007/s00009-018-1163-3
[9] Javdannezhad, S.M., Mousavinasab, S.F., & Shirali, N. (2023). On multiplication fs-modules and dimension symmetry. J. Mahani Math. Res, 12(2), 363-374. https://doi.org/10.22103/jmmr.2023.20103.1324
[10] Javdannezhad, S.M., Mousavinasab, S.F., & Shirali, N. (2023). On dualclassical Krull dimension of rings. Quaestiones Mathematicae, 46(8), 1629-1641. https://doi.org/10.2989/16073606.2022.2110960
[11] Karamzadeh, O.A.S. (1974). Noetherian dimension. Ph.D. thesis, Exeter.
[12] Karamzadeh, O.A.S., & Sajedinejad, A.R. (2001). Atomic modules. Comm. Algebra, 29(7), 2757-2773. https://doi.org/10.1081/AGB-4985
[13] Krause, G. (1970). On the Krull dimension of left Noetherian left Matlis rings. Math. Z., 118(3), 207-214. https://doi.org/10.1007/BF01113344
[14] Lemonnier, B. (1978). Dimension de Krull et codeviation, Application au theorem dEakin. Comm. Algebra, 6, 1647-1665. https://doi.org/10.1080/00927877808822313
[15] Lomp, C. (1996). On dual Goldie dimension. Diplomarbeit(M. Sc. Thesis), HHU Doesseldorf, Germany.
[16]  Ozcan, A.C ., Harmanci, A., & Smith, P.F. (2006). Duo modules. Glasgow Mathematical Journal, 48(3), 533-545. https://doi.org/10.1017/S0017089506003260
[17] Rentschler, R., & Gabriel, P. (1967). Sur la dimension des anneaux et ensembles ordonn es. CR Acad. Sci. Paris, 265(2), 712-715.
[18] Shirali, N. (2023). The Noetherian dimension of modules versus their  small shortness. Algebraic Structures and Their Applications, 10(1), 1-15. https://doi.org/10.22034/as.2023.2699
[19] Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach Science Publishers, Reading, Philadelphia. https://doi.org/10.1201/9780203755532
[20] Woodward, A. (2007). Rings and modules with Krull dimension. Ph.D. diss, University of Glasgow.