[3] Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., & Wood, D.R. (2007). On the metric dimension of Cartesian product of graphs. SIAM J. Discrete Math., 21(2), 423-441.
https://doi.org/10.1137/050641867
[4] Charon, I., Hudry, O., & Lobstein, A. (2003). Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci., 290(3), 2109-2120.
https://doi.org/10.1016/s0304-3975(02)00536-4
[7] Estrada-Moreno, A., Ramrez-Cruz, Y., & Rodriguez-Velazquez, J. A. (2016). On the adjacency dimension of graphs. Appl. Anal. Discrete Math., 10(1), 102-127.
https://doi.org/10.2298/aadm151109022e
[8] Fernau, H., & Rodriguez-Velazquez, J. A. (2014). Notions of metric dimension of corona products: combinatorial and computational results, in: Computer science theory and applications. Springer, Cham, Lect. Notes Comput. Sci., 84(1), 153-
166.
https://doi.org/10.1007/978-3-319-06686-8
[9] Fernau, H., & Rodriguez-Velazquez, J. A. (2018). On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math., 23(6), 183-202.
https://doi.org/10.1016/j.dam.2017.11.019
[10] Harary, F. (1969). Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London.
[11] Harary, F., & Melter, R. A. (1976). On the Metric Dimension of a Graph. Ars Combin., 2(1), 191-195.
[13] Iswadi, H., Baskoro, E.T., & Simanjuntak, R. (2011). On the metric dimension of corona product of graphs. Far East J. Math. Sci., 52(2), 155-170.
http://pphmj.com/journals/fjms.htm
[21] Rodrguez-Velazquez, J. A., & Fernau, H. (2018). On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math., 236(1), 183-202.
https://doi.org/10.1016/j.dam.2017.11.019
[24] Slater, P.J. (1975). Leaves of trees. Congr. Numer., 14(1), 549-559.