[3] Berkovich Y. (2008). Groups of prime power order, Vol. 1, Walter de Gruyter Berlin-New York.
[5] Gorenstein D. (1980). Finite groups, Chelsea publishing company, New York.
[6] The GAP Group. Groups, Algorithms and Programing (2005). Version 4.4, (http://www.gap-system.org).
[7] Harrington J., Jones L., & Lamarche A. (2014). Characterizing nite groups using the sum of the orders of the elements, Int. J. Combin., Article ID 835125, 8 pages.
http://dx.doi.org/10.1155/2014/835125
[10] Herzog M., Longobardi P., & Maj M. (2023). On groups with average element orders equal to the average order of alternating group of degree 5, Glas. Mat., 58(2), 307-315.
https://doi.org/10.3336/gm.58.2.10
[13] Miller G. A., & Moreno H. C. (1903). Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4(4), (1903) 398-404.
https://doi.org/10.2307/1986409