On functional identities involving n-derivations in rings

Document Type : Special Issue: First Joint IIIMT-Algebra Forum Conference 2023

Authors

1 Institute of Applied Sciences & Humanities, GLA University, Mathura-281406, Mathura-281406, India

2 Department of Mathematics, Aligarh Muslim University, Aligarh, India

3 Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia

Abstract

In this paper, we explore various properties associated with the traces of permuting $n$-derivations satisfying certain functional identities that operate on a Lie ideal within prime and semiprime rings. Additionally, we address and discuss
correlated findings pertaining to left $n$-multipliers. Lastly, we enrich our results with examples that show the necessity of their assumptions.

Keywords

Main Subjects


[1] Argac, N., & Yenigul, M. S. (1993). Lie ideals and symmetric bi-derivations of prime rings, Symmetries in Science VI: From the Rotation Group to Quantum Algebras, Springer, US, 41-45.
[2] Ashraf, M., Khan, A., & Jamal, M. R. (2018). Traces of permuting generalized nderivations of rings, Miskolc Math. Notes, 19(2), 731-740.
[3] Ashraf, M., & Rehman, N. (2001). On derivation and commutativity in prime rings, East West J. Math., 3(1), 87-91.
[4] Ashraf, M., Ali, A., & Ali, S. (2007). Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31, 415{421.
[5] Bedir, Z., & Golbasi,  O. (2020). Some commutativity on Lie ideals on semiprime rings, ADYU J. SCI., 10(2), 548-556.
[6] Bergen, J., Herstein, I. N., & Kerr, J. W. (1981). Lie ideals and derivations of prime rings, J. Algebra, 71(1), 259-267.
[7] Bresar, M. (1993). Centralizing mappings and derivations in prime rings, J. Algebra, 156, 385-394.
[8] Bresar, M. (1991). On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, 89{93.
[9] Daif, M. N., & Bell, H. E. (1992). Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15(1), 205-206.
[10] Golbasi, O., & Sogutcu, E. Koc (2011). Generalized Derivations on Lie Ideals in Prime Rings, Turkish J. Math., 35(1), 23-28.
[11] Herstein, I. N. (1970). On the Lie structure of an associative ring. J. Algebra, 14(4), 561{571.
[12] Hongan, M., Rehman, N., & Omary, R. M. Al (2011). Lie ideals and Jordan triple derivations of rings. Rend. Sem. Mat. Univ. Padova, 125, 147{156.
[13] Maksa, G. (1987). On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada IX, 303{308.
[14] Maksa, G. (1980). A remark on symmetric bi-additive functions having nonnegative diagonalization, Glas. Mat., 15(35), 279{282.
[15] Muthana, N. M. (2007). Left cetralizer traces, generalized bi-derivations left bimultipliers and generalized Jordan biderivations, Aligarh Bull. Math., 26(2), 33{45.
[16] Park, K. H. (2009). On prime and semi-prime rings with symmetric n-derivations, J. Chungcheong Math. Soc., 22(3), 451{458.
[17] Posner, E. C. (1957). Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093{1100.
[18] Rehman, N., & Ansari, A. Z. (2013). On Lie ideals with symmetric bi-additive maps in rings, Palest. J. Math., 2(1), 14{21.
[19] Sogutcu, E. Koc, & Golbasi,  O. (2023). Commutativity theorems on Lie ideals with symmetric bi-derivations in semiprime rings, Asian-Eur. J. Math., 16(7), 2350129.
[20] Sogutcu, E. Koc, & Huang, S. (2022). Note on lie ideals with symmetric bi-derivations in semiprime rings, Indian J. Pure Appl. Math., https://doi.org/10.1007/s13226-022-00279-w.
[21] Vukman, J. (1989). Symmetric bi-derivations on prime and semiprime rings, Aequationes Math., 38, 245-254.
[22] Vukman, J. (1990). Two results concerning symmetric bi-derivations on prime and semiprime rings, Aequationes Math., 40, 181-189.
Volume 13, Issue 5 - Serial Number 30
Special Issue: First Joint IIIMT-Algebra Forum Conference 2023
December 2024
Pages 21-40
  • Receive Date: 11 April 2024
  • Revise Date: 08 October 2024
  • Accept Date: 15 November 2024