[1] Ansari-Toroghy, H., Farshadifar, F., and Mahboobi-Abkenar, F. (2018). On the ideal-based zero-divisor graphs. Int. Electron. J. Algebra, 23, 115-130.
[2] Ansari-Toroghy, H. and Farshadifar, F. (2019). Survey on comultiplication modules. Surv. Math. Appl., 14, 61-108.
[3] Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A. (1999). On z0-ideals in C(X). Fund. Math., 160 (1), 15-25.
[4] Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A. (2000). On ideals consisting entirely of zero divisors. Comm. Algebra, 28 (2), 1061-1073.
[5] Barnard, A. (1981). Multiplication modules. J. Algebra, 71 (1), 174-178.
[6] Cisse, M. D. and Sow, D. (2017). On generalizations of essential and small submodules. Southeast Asian Bull. Math., 41 (3), 369-383.
[7] Dauns, J. (1978). Prime modules. J. Reine Angew. Math., 298, 156-181.
[8] El-Bast, Z. A. and Smith, P. F. (1988). Multiplication modules. Comm. Algebra, 16 (4), 755-779.
[9] Farshadifar, F. A generalization of z-ideals. submitted.
[10] Farshadifar, F. z-submodules of a reduced multiplication module. submitted.
[11] Feller, E. H. and Swokowski, E. W. (1965). Prime modules. Canadian J. Math., 17, 1041-1052.
[12] Gaur, A. and Maloo, A. K. (2008). Minimal prime submodules. Int. J. Algebra 2 (20), 953-956.
[13] Gillman, L. and Jerison, M. (1960). Rings of continuous functions. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York.
[14] Koohy, H. (2008). On niteness of multiplication modules. Acta Math. Hungar., 118 (1-2), 1-7.[15] Mason, G. (1973). z-ideals and prime idealsz-ideals and prime ideals. J. Algebra, 26, 280-297.
[16] McCasland, R. L. and Moore, M. E. (1986). On radicals of submodules of nitely generated modules. Canad. Math. Bull., 29 (1), 37-39.
[17] Namdari, M. (2023). The story of rings of continuous functions in Ahvaz: from C(X) to Cc(X). J. Iran. Math. Soc. 4 (2), 149-182.
[18] Samei, K. (2011). Reduced multiplication modules. Proc. Indian Acad. Sci. Math. Sci., 121 (2), 121-132.
[19] Smith, P. F. (1988). Some remarks on multiplication modules. Arch. Math. (Basel), 50 (3), 223-235.