[1] Gasmi, K., Dilek, S., Tosun, S., & Ozdemir, S. (2021). A survey on computation ooading and service placement in fog computing-based IoT. The Journal of Supercomputing, 78, 1983-2014.
https://doi.org/10.1007/s11227-021-03941-y
[2] Maciel, P., Dantas, J., Melo, C., Pereira, P., Oliveira, F., Araujo, J., & Matos, R. (2022). A survey on reliability and availability modeling of edge, fog, and cloud computing. Journal of Reliable Intelligent Environments, 8, 227{245.
https://doi.org/10.1007/s40860-021-00154-1
[3] Kant, U., & Kumar, V. (2022). IoT network used in fog and cloud computing. Internet of Things: Security and Privacy in Cyberspace, 165-187.
[4] Buyya, R., & Venugopal, S. (2005). A gentle introduction to grid computing and technologies. CSI Communications, 9-19.
[5] Mohammad Hasani Zade, B., & Mansouri, N. (2022). PPO: A new nature-inspired metaheuristic algorithm based on predation for optimization. Soft Computing, 26, 1331{1402.
https://doi.org/10.1007/s00500-021-06404-x
[6] Saravanan, G., Neelakandan, S., Ezhumalai, & P. Maurya, S. (2023). Improved wild horse optimization with levy
ight algorithm for e ective task scheduling in cloud computing. Journal of Cloud Computing, 12(24).
https://doi.org/10.1186/s13677-023-00401-1
[7] Behera, I., & Sobhanayak, S. (2024). Task scheduling optimization in heterogeneous cloud computing environments: A hybrid GA-GWO approach. Journal of Parallel and Distributed Computing, 183, 104766.
https://doi.org/10.1016/j.jpdc.2023.104766
[8] Saif, F.A., Latip, R. Hanapi, Z.M., & Sha nah, K. (2023). Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing. IEEE Access, 11, 20635-20646.
https://doi.org/10.1109/ACCESS.2023.3241240
[9] Peter, M., & Grance, T. (2011). The NIST de nition of cloud computing.
[10] Jalali Khalil Abadi, Z., Mansouri, N., & Khalouie, M. (2023). Task scheduling in fog environment | Challenges, tools and methodologies: A review. Computer Science Review, 48, 100550.
https://doi.org/10.1016/j.cosrev.2023.100550
[12] Bhandari, G.P., & Gupta, R. (2019). An overview of edge/cloud computing architecture with its issues and challenges. Advancing Consumer-Centric Fog Computing Architectures, 1-37.
[13] Sriram, G.K. (2022). Edge computing vs. cloud computing: An overview of big data challenges and opportunities for large enterprises. International Research Journal of Modernization in Engineering Technology and Science, 4, 1331-1337.
http://dx.doi.org/10.0202/Computin.2022197786
[14] Ghafari, R., Hassani Kabutarkhani, F., & Mansouri, N. (2022). Task scheduling algorithms for energy optimization in cloud environment: A comprehensive review. Cluster Computing, 25, 1035-1093.
https://doi.org/10.1007/s10586-021-03512-z
[16] Pradeep, K., Gobalakrishnan, N., Manikandan, N., Javid Ali, L., Parkavi, K., & Vijayakumar, K.P. (2021). A review on task scheduling using optimization algorithm in clouds. 5th International Conference on Trends in Electronics and Informatics (ICOEI).
https://doi.org/10.1109/ICOEI51242.2021.9452837
[17] Gray, M.R., and Johnson, D.S. (1979). Computers and intractability: A guide to the theory of NP-completeness. The Journal of Symbolic Logic, 48(2), 90-91.
[18] Pradhan, R., & Satapathy, S.C. (2023). Particle Swarm Optimization-based energy-aware task scheduling algorithm in heterogeneous cloud. Communication, Software and Networks, 439-450. https://doi.org/10.1007/978-981-19-4990-6 40
[19] Indhumathi, R., Amuthabala, K., Kiruthiga, G., Yuvaraj, N., & Pandey, A. (2023). Design of task scheduling and fault tolerance mechanism based on GWO algorithm for attaining better QoS in cloud system. Wireless Personal Communications, 128, 2811-2829.
https://doi.org/10.1007/s11277-022-10072-x
[20] Prem Jacob, T., & Pradeep, K. (2019). A multi objective optimal task scheduling in cloud environment using Cuckoo Particle Swarm Optimization. Wireless Personal Communications, 109, 315-331.
https://doi.org/10.1007/s11277-019-06566-w
[21] Abd Elaziz, M., & Attiya, I. (2021). An improved Henry Gas Solubility Optimization algorithm for task scheduling in cloud computing. Arti cial Intelligence Review, 54, 3599-3637.
https://doi.org/10.1007/s10462-020-09933-3
[22] Huang, X., Li, C., Chen, H., & An, D. (2020). Task scheduling in cloud computing using Particle Swarm Optimization with time varying inertia weight strategies. Cluster Computing, 23, 1137-1147.
https://doi.org/10.1007/s10586-019-02983-5
[23] Vijarania, M., Agrawal, A., & Sharma, M.M. (2021). Task scheduling and load balancing techniques using Genetic Algorithm in cloud computing. Soft Computing: Theories and Applications, 97-105. https://doi.org/10.1007/978-981-16-1696-9 9
[24] Su, Y., Bai, Z., & Xie, D. (2021). The optimizing resource allocation and task scheduling based on cloud computing and Ant Colony Optimization Algorithm. Journal of Ambient Intelligence and Humanized Computing.
https://doi.org/10.1007/s12652-021-03445-w
[25] Tripathi, G., & Kumar, R. (2022). A heuristic-based task scheduling policy for QoS improvement in cloud. International Journal of Cloud Applications and Computing, 12(2), 1-22.
https://doi.org/10.4018/IJCAC.295238
[26] Krishnan, S., & Rajalakshmi, N.R. (2022). A cost-optimized data parallel task Sscheduling in multi-core resources under deadline and budget constraints. International Journal of Cloud Applications and Computing, 12(2), 1-16.
https://doi.org/10.4018/IJCAC.305857
[27] Ajmal, M.S., Iqbal, Z., Khan, F.Z., Ahmad, M., Ahmad, I., & Gupta, B.B. (2021). Hybrid ant genetic algorithm for ecient task scheduling in cloud data centers. Computers and Electrical Engineering, 95, 107419.
https://doi.org/10.1016/j.compeleceng.2021.107419
[29] Mirjalili, S.A., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., & Mirjalili, S.M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
https://doi.org/10.1016/j.advengsoft.2017.07.002
[32] Dhiman, G., & Kumar, V. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Arti cial Intelligence, 82, 148-174.
https://doi.org/10.1016/j.engappai.2019.03.021
[33] Zhang, Y., & Wang, J. (2024). Enhanced Whale Optimization Algorithm for task scheduling in cloud computing environments. Journal of Engineering and Applied Science, 71(121).
https://doi.org/10.1186/s44147-024-00445-3
[34] Damera, V.K., Vanitha, G., Indira, B., Sirisha, G., & Vatambeti, R. (2023). Improved snake optimization-based task scheduling in cloud computing. Computing, 106, 3353-3385.
https://doi.org/10.1007/s00607-024-01323-9