[1] Iscan, I. (2014). Hermite - Hadamard type of inequalities for harmonically convex functions. Hacettepe Journal of Mathematics and Statistics, 2(43), 935-942.
[2] Iscan, I. (2015). Ostrowski type inequalities for harmonically s-convex functions. Konuralp Journal of Mathematicics, 1(3), 63-74.
[3] Iscan, I. (2016). Hermite-Hadamard type inequalities for harmonically ( ;m)-convex functions. Hacettepe Journal of Mathematics and Statistics, 2(45), 381-390.
[4] Iscan, I. Numan, S. and Bekar, K. (2014). Hermite-Hadamard and Simpson type inequalities for di erentiable harmonically p-convex functions. British Journal of Mathematics and Computer Science, 14 (4), 1908-1920.
[6] Muhammad, A.A., Mujahid, A, and Azhar, A.Z. (2019). On some Hermite-Hadamard integral inequalities in multiplicative calculus. Journal of Applied and Engineering, 10, 111-122.
[7] Niculescu, C.P. (2000). Convexity according to the geometric mean. Mathematical Inequalities and Applications, 2(3), 155-167.
[8] Niculescu, C. P., and Persson, L.E. (2018). Convex Functions and Their Applications. Springer-Verlag. New York.
[9] Noor, MA., Noor, KI, Awan, MU., and Costache, S (2015). Some integral inequalities for harmonically h-convex functions. Politehnica University of Bucharest. Scienti c Bulletin. Series A. Applied Mathematicis and Physices, 1(77), 5-16.
[11] Ozcan, S. (2023). Hermite Hadamard type inequalities for exponential type multiplicatively convex functions. University of Nis, Serbia, 37(28), 9777-9789.
https://doi.org/10.2298/FIL23287770.
[12] Ozcan, S. (2019). Some Integral Inequalities for Harmonically ( ; s)-Convex Functions. Journal of Function Spaces, 1-8. doi:10.1155/2019/2394021
[13] Varosanee, S. (2007). On h-convexity. Journal of Mathematical Analysis and Applications, 1 (326), 303-311.
[14] Yan Xi, B., Dan-Dan G, Feng Qi. (2020). Integral inequalities of Hermite-Hadamard type for ( ; s) convex and ( ; s;m)-convex functions. Italian Journal of Pure and Applied Mathematics, 44, 499-510. hal-01761678v2, 2020.